Announcements

• Midterm, Wednesday, Feb 8
Minimum Spanning Tree

[Diagram of a graph with labeled nodes and edges, showing a minimum spanning tree with red edges.

Nodes: t, a, s, v, b, g, u, e

Edge Weights:
- t-a: 15
- a-b: 9
- a-s: 3
- s-t: 10
- s-b: 2
- b-g: 22
- b-e: 4
- e-g: 15
- g-c: 15
- c-a: 6
- a-c: 14
- c-f: 7
- f-c: 20
- f-v: 16
- v-u: 1
- u-b: 12
- b-t: 17]
Greedy Algorithms for Minimum Spanning Tree

- **Prim’s Algorithm:** Extend a tree by including the cheapest outgoing edge.
- **Kruskal’s Algorithm:** Add the cheapest edge that joins disjoint components.
Greedy Algorithm 1
Prim’s Algorithm

• Extend a tree by including the cheapest outgoing edge

Construct the MST with Prim’s algorithm starting from vertex a
Label the edges in order of insertion
Greedy Algorithm 2
Kruskal’s Algorithm

• Add the cheapest edge that joins disjoint components

Construct the MST with Kruskal’s algorithm
Label the edges in order of insertion
Why do the greedy algorithms work?

- For simplicity, assume all edge costs are distinct
Edge inclusion lemma

• Let S be a subset of V, and suppose $e = (u, v)$ is the minimum cost edge of E, with u in S and v in $V - S$

• e is in every minimum spanning tree of G
 – Or equivalently, if e is not in T, then T is not a minimum spanning tree
Proof

- Suppose T is a spanning tree that does not contain e.
- Add e to T, this creates a cycle.
- The cycle must have some edge $e_1 = (u_1, v_1)$ with u_1 in S and v_1 in V-S.
- $T_1 = T - \{e_1\} + \{e\}$ is a spanning tree with lower cost.
- Hence, T is not a minimum spanning tree.
Optimality Proofs

• Prim’s Algorithm computes a MST
• Kruskal’s Algorithm computes a MST

• Show that when an edge is added to the MST by Prim or Kruskal, the edge is the minimum cost edge between S and V-S for some set S.
Prim’s Algorithm

S = { }; T = { };
while S != V
 choose the minimum cost edge
 e = (u,v), with u in S, and v in V-S
 add e to T
 add v to S
Prove Prim’s algorithm computes an MST

- Show an edge e is in the MST when it is added to T
Kruskal’s Algorithm

Let $C = \{\{v_1\}, \{v_2\}, \ldots, \{v_n\}\}; \ T = \{\}$

while $|C| > 1$

Let $e = (u, v)$ with u in C_i and v in C_j be the minimum cost edge joining distinct sets in C

Replace C_i and C_j by $C_i \cup C_j$

Add e to T
Prove Kruskal’s algorithm computes an MST

• Show an edge e is in the MST when it is added to T
MST Implementation and runtime

• Prim’s Algorithm
 – Implementation, runtime: just like Dijkstra’s algorithm
 – Use a heap, runtime O(m log n)

• Kruskal’s Algorithm
 – Sorting edges by cost: O(m log n)
 – Managing connected components uses the Union-Find data structure
 • Amazing, pointer based data structure
 • Very interesting mathematical result
Disjoint Set ADT

• Data: set of pairwise disjoint sets.
• Required operations
 – **Union** – merge two sets to create their union
 – **Find** – determine which set an item appears in

• Check \(\text{Find}(v) \neq \text{Find}(w) \) to determine if \((v,w)\) joins separate components
• Do \(\text{Union}(v,w) \) to merge sets
Up-Tree for DS Union/Find

Observation: we will only traverse these trees upward from any given node to find the root.

Idea: *reverse* the pointers (make them point up from child to parent). The result is an **up-tree**.

Initial state

```
1  2  3  4  5  6  7
```

Intermediate state

```
1  3
  
7
  
5  4  6
```

Roots are the names of each set.
Application: Clustering

• Given a collection of points in an r-dimensional space and an integer K, divide the points into K sets that are closest together.
Distance clustering

• Divide the data set into K subsets to maximize the distance between any pair of sets
 \[\text{dist} (S_1, S_2) = \min \{ \text{dist}(x, y) \mid x \text{ in } S_1, y \text{ in } S_2 \} \]
Divide into 2 clusters
Divide into 3 clusters
Divide into 4 clusters
Distance Clustering Algorithm

Let $C = \{\{v_1\}, \{v_2\}, \ldots, \{v_n\}\}$; $T = \{\}$
while $|C| > K$

Let $e = (u, v)$ with u in C_i and v in C_j be the minimum cost edge joining distinct sets in C

Replace C_i and C_j by $C_i \cup C_j$
K-clustering
Shortest paths in directed graphs vs undirected graphs
What about the minimum spanning tree of a directed graph?

- Must specify the root \(r \)
- Branching: Out tree with root \(r \)

Assume all vertices reachable from \(r \)

Also called an arborescence.
Finding a minimum branching
Another MST Algorithm

- Choose minimum cost edge into each vertex
- Merge into components
- Repeat until done
Idea for branching algorithm

• Select minimum cost edge going into each vertex
• If graph is a branching then done
• Otherwise collapse cycles and repeat