Single Source Shortest Path Problem

- Given a graph and a start vertex s
 - Determine distance of every vertex from s
 - Identify shortest paths to each vertex
 - Express concisely as a "shortest paths tree"
 - Each vertex has a pointer to a predecessor on shortest path

Construct Shortest Path Tree from s

Assume all edges have non-negative cost

Dijkstra's Algorithm

$S = \{\}; \quad d[s] = 0; \quad d[v] = \infty \text{ for } v \neq s$

While $S \neq V$

Choose v in $V \setminus S$ with minimum $d[v]$

Add v to S

For each w in the neighborhood of v

\[d[w] = \min(d[w], d[v] + c(v, w)) \]

Warmup

- If P is a shortest path from s to v, and if t is on the path P, the segment from s to t is a shortest path between s and t

- WHY?
Simulate Dijkstra’s algorithm (starting from s) on the graph

Who was Dijkstra?

- What were his major contributions?

http://www.cs.utexas.edu/users/EWD/

- Edsger Wybe Dijkstra was one of the most influential members of computing science’s founding generation. Among the domains in which his scientific contributions are fundamental are
 - algorithm design
 - programming languages
 - program design
 - operating systems
 - distributed processing
 - formal specification and verification
 - design of mathematical arguments

Dijkstra’s Algorithm as a greedy algorithm

- Elements committed to the solution by order of minimum distance

Correctness Proof

- Elements in S have the correct label
- Key to proof: when v is added to S, it has the correct distance label.

Proof

- Let v be a vertex in V-S with minimum d[v]
- Let P_v be a path of length d[v], with an edge (u,v)
- Let P be some other path to v. Suppose P first leaves S on the edge (x, y)
 - \(P = P_u + c(x,y) + P_v \)
 - \(\text{Len}(P_u) + c(x,y) >= d[y] \)
 - \(\text{Len}(P_v) >= 0 \)
 - \(\text{Len}(P) >= d[y] + 0 >= d[v] \)
Negative Cost Edges

- Draw a small example of a negative cost edge and show that Dijkstra's algorithm fails on this example.

Dijkstra Implementation

\[S = \emptyset; \quad d[s] = 0; \quad d[v] = \infty \text{ for } v \neq s \]

While \(S \neq V \)

- Choose \(v \) in \(V \setminus S \) with minimum \(d[v] \)
- Add \(v \) to \(S \)

For each \(w \) in the neighborhood of \(v \)

\[d[w] = \min(d[w], d[v] + c(v, w)) \]

- Basic implementation requires Heap for tracking the distance values
- Run time \(O(m \log n) \)

O(n^2) Implementation for Dense Graphs

```
FOR i := 1 TO n
    d[i] := \infty; visited[i] := FALSE;
    d[s] := 0;

FOR i := 1 TO n
    v := -1; dMin := \infty;
    FOR j := 1 TO n
        IF visited[j] = FALSE AND d[j] < dMin
            v := j; dMin := d[j];
        IF v = -1
            RETURN;
    visited[v] := TRUE;

FOR j := 1 TO n
    IF d[v] + len[v, j] < d[j]
        d[j] := d[v] + len[v, j];
        prev[j] := v;
```