Announcements

• Today’s lecture
 – Kleinberg-Tardos, 4.3, 4.4

• Monday
 – Kleinberg-Tardos, 4.4, 4.5

• Text book has lots of details on some of the proofs that I cover quickly
Greedy Algorithms

• Solve problems with the simplest possible algorithm
• Today’s problems (Sections 4.3, 4.4)
 – Another homework scheduling task
 – Optimal Caching
• Start Dijkstra’s shortest paths algorithm
Scheduling Theory

• Tasks
 – Execution time, value, release time, deadline

• Processors
 – Single processor, multiple processors

• Objective Function – many options, e.g.
 – Maximize tasks completed
 – Minimize number of processors to complete all tasks
 – Minimize the maximum lateness
 – Maximize value of tasks completed by deadline
Homework Scheduling

• Each task has a length t_i and a deadline d_i
• All tasks are available at the start
• One task may be worked on at a time
• All tasks must be completed

• Goal minimize maximum lateness
 – Lateness: $L_i = f_i - d_i$ if $f_i \geq d_i$
Result: Earliest Deadline First is Optimal for Min Max Lateness

<table>
<thead>
<tr>
<th>Time</th>
<th>Deadline</th>
<th>Lateness A_1</th>
<th>Lateness A_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1</td>
<td>2</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>a_2</td>
<td>3</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>a_3</td>
<td>4</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>a_4</td>
<td>5</td>
<td>12</td>
<td>2</td>
</tr>
</tbody>
</table>

1/27/2023
Another version of HW scheduling

• Assign values to HW units
• Maximize value completed by deadlines

• Simplifying assumptions
 – All Homework items take one unit of time
 – All items available at time 0
 – Each item has an integer deadline
 – Each item has a value
 – Maximize value of items completed before their deadlines
Can you get everything done?
What do you do first?

<table>
<thead>
<tr>
<th>Task</th>
<th>Value</th>
<th>Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>T_2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>T_3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>T_4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>T_5</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>T_6</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>T_7</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>T_8</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>
Problem transformation

• Convert to an equivalent problem with release times and a uniform deadline

• If D is the latest deadline, set r'_{i} as $D-d_{i}$ and d'_{i} as D
Greedy Algorithm

- Starting from $t = 0$, schedule the highest value available task

$$S = \emptyset;$$

for $i = 0$ to $D - 1$

- Add tasks with release time i to S;
- Remove highest value task t from S;
- Schedule task t at i;
Correctness argument

• Show that the item at \(t = 0 \) is scheduled correctly
 – The argument can be repeated for \(t=1, 2, \ldots \)
 – Or the argument can be put in the framework of mathematical induction
First item scheduled is correct

• Let \(t \) be the task scheduled at \(i = 0 \), then there exists an optimal schedule with \(t \) at \(i = 0 \)

• Suppose \(O = \{ a_0, a_1, a_2, \ldots \} \) is an optimal schedule:
 – Case 1: \(t = a_0 \)
 – Case 2: \(t \notin O \)
 – Case 3: \(t \neq a_0 \) and \(t \in O \)
Interpretation

• The transformation was done so that we could think about the first item to schedule, as opposed to the last item to schedule.

• In the original problem with deadlines, this is asking “what task do I do last”
 – So this is a procrastination based approach!
Optimal Caching

• Memory Hierarchy
 – Fast Memory (RAM)
 – Slow Memory (DISK)
 – Move big blocks of data from DISK to RAM for processing

• Caching problem:
 – Maintain collection of items in local memory
 – Minimize number of items fetched
Caching example

A, B, C, D, A, E, B, A, D, A, C, B, D, A
Optimal Caching

• If you know the sequence of requests, what is the optimal replacement pattern?
• Note – it is rare to know what the requests are in advance – but we still might want to do this:
 – Some specific applications, the sequence is known
 • Register allocation in code generation
 – Competitive analysis, compare performance on an online algorithm with an optimal offline algorithm
Farthest in the future algorithm

- Discard element used farthest in the future

A, B, C, A, C, D, C, B, C, A, D
Correctness Proof

• Sketch
• Start with Optimal Solution O
• Convert to Farthest in the Future Solution F-F
• Look at the first place where they differ
• Convert O to evict F-F element
 – There are some technicalities here to ensure the caches have the same configuration . . .
Single Source Shortest Path Problem

• Given a graph and a start vertex s
 – Determine distance of every vertex from s
 – Identify shortest paths to each vertex
 • Express concisely as a “shortest paths tree”
 • Each vertex has a pointer to a predecessor on shortest path
Construct Shortest Path Tree from s
Warmup

• If P is a shortest path from s to v, and if t is on the path P, the segment from s to t is a shortest path between s and t.

• WHY?
Dijkstra’s Algorithm

S = { }; d[s] = 0; d[v] = infinity for v != s

While S != V

Choose v in V-S with minimum d[v]
Add v to S
For each w in the neighborhood of v

\[d[w] = \min(d[w], d[v] + c(v, w)) \]

Assume all edges have non-negative cost
Simulate Dijkstra’s algorithm (starting from s) on the graph