Announcements

- Today’s lecture
 - Kleinberg-Tardos, 4.2, 4.3
- Friday and Monday
 - Kleinberg-Tardos, 4.4, 4.5

Greedy Algorithms

- Solve problems with the simplest possible algorithm
- The hard part: showing that something simple actually works
- Today’s problems (Sections 4.2, 4.3)
 - Graph Coloring
 - Homework Scheduling
 - Optimal Caching

Interval Scheduling

- Tasks occur at fixed times, single processor
- Maximize number of tasks completed

- Earliest finish time first algorithm optimal
- Optimality proof: stay ahead lemma
 - Mathematical induction is the technical tool

Scheduling all intervals with multiple processors

- Minimize number of processors to schedule all intervals

Algorithm

Sort intervals by start time
for i = 1 to n
 Assign interval i to the lowest numbered idle processor

Depth: Maximum number of overlapping intervals
Greedy Graph Coloring

Theorem: An undirected graph with maximum degree K can be colored with $K+1$ colors.

Greedy Coloring Algorithm

- Assume maximum degree K
- Pick a vertex v, and assign a color not in $N(v)$ from $[1, \ldots, K+1]$
- Always an available color

- In the worst case, this algorithm cannot be improved
 - There exists a graph of degree K requiring $K+1$ colors.

Coloring Algorithm, Version 1

Let k be the largest vertex degree
Choose $k+1$ colors
for each vertex v
 Color[v] = uncolored
for each vertex v
 Let c be a color not used in $N[v]$
 Color[v] = c

Coloring Algorithm, Version 2

for each vertex v
 Color[v] = uncolored
for each vertex v
 Let c be the smallest color not used in $N[v]$
 Color[v] = c

Interval scheduling is graph coloring

Homework Scheduling

- Tasks to perform
- Deadlines on the tasks
- Freedom to schedule tasks in any order

- Can I get all my work turned in on time?
- If I can’t get everything in, I want to minimize the maximum lateness
Scheduling tasks

- Each task has a length t_i and a deadline d_i
- All tasks are available at the start
- One task may be worked on at a time
- All tasks must be completed

- Goal: minimize maximum lateness
 \[L_i = f_i - d_i \text{ if } f_i \geq d_i \]

Example

<table>
<thead>
<tr>
<th>Time</th>
<th>Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_1)</td>
<td>2</td>
</tr>
<tr>
<td>(a_2)</td>
<td>3</td>
</tr>
</tbody>
</table>

Determine the minimum lateness

<table>
<thead>
<tr>
<th>Time</th>
<th>Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_1)</td>
<td>2</td>
</tr>
<tr>
<td>(a_2)</td>
<td>3</td>
</tr>
<tr>
<td>(a_3)</td>
<td>4</td>
</tr>
<tr>
<td>(a_4)</td>
<td>5</td>
</tr>
</tbody>
</table>

| Deadline Time | | 2 | 3 | 5 | 12 |
|--------------|-----|---|---|---|
| \(a_1\) | \(a_2\) | \(a_3\) | \(a_4\) |

Greedy Algorithm

- Earliest deadline first
- Order jobs by deadline
- This algorithm is optimal

Analysis

- Suppose the jobs are ordered by deadlines, $d_1 \leq d_2 \leq \ldots \leq d_n$
- A schedule has an inversion if job j is scheduled before i where $j > i$

- The schedule A computed by the greedy algorithm has no inversions.
- Let O be the optimal schedule, we want to show that A has the same maximum lateness as O

List the inversions

<table>
<thead>
<tr>
<th>Time</th>
<th>Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_1)</td>
<td>3</td>
</tr>
<tr>
<td>(a_2)</td>
<td>4</td>
</tr>
<tr>
<td>(a_3)</td>
<td>2</td>
</tr>
<tr>
<td>(a_4)</td>
<td>5</td>
</tr>
</tbody>
</table>

| Deadline | | 2 | 3 | 5 | 12 |
|----------|-----|---|---|---|
| \(a_4\) | \(a_2\) | \(a_1\) | \(a_3\) |
Lemma: There is an optimal schedule with no idle time

- It doesn't hurt to start your homework early!
- Note on proof techniques
 - This type of can be important for keeping proofs clean
 - It allows us to make a simplifying assumption for the remainder of the proof

Interchange argument

- Suppose there is a pair of jobs i and j, with $d_i \leq d_j$, and j scheduled immediately before i. Interchanging i and j does not increase the maximum lateness.

Proof by Bubble Sort

Determine maximum lateness

Real Proof

- There is an optimal schedule with no inversions and no idle time.
- Let O be an optimal schedule k inversions, we construct a new optimal schedule with $k-1$ inversions
- Repeat until we have an optimal schedule with 0 inversions
- This is the solution found by the earliest deadline first algorithm

Result

- Earliest Deadline First algorithm constructs a schedule that minimizes the maximum lateness
Homework Scheduling

• How is the model unrealistic?

Extensions

• What if the objective is to minimize the sum of the lateness?
 – EDF does not work
• If the tasks have release times and deadlines, and are non-preemptable, the problem is NP-complete
• What about the case with release times and deadlines where tasks are preemptable?

Optimal Caching

• Caching problem:
 – Maintain collection of items in local memory
 – Minimize number of items fetched

Caching example

A, B, C, D, A, E, B, A, D, A, C, B, D, A

Optimal Caching

• If you know the sequence of requests, what is the optimal replacement pattern?
• Note – it is rare to know what the requests are in advance – but we still might want to do this:
 – Some specific applications, the sequence is known
 – Register allocation in code generation
 – Competitive analysis, compare performance on an online algorithm with an optimal offline algorithm

Farthest in the future algorithm

• Discard element used farthest in the future

A, B, C, A, C, D, C, B, C, A, D
Correctness Proof

- Sketch
- Start with Optimal Solution O
- Convert to Farthest in the Future Solution F-F
- Look at the first place where they differ
- Convert O to evict F-F element
 - There are some technicalities here to ensure the caches have the same configuration . . .