Graph Connectivity

• An undirected graph is **connected** if there is a path between every pair of vertices x and y
• A **connected component** is a maximal connected subset of vertices

Connected Components

• **Undirected Graphs**

Computing Connected Components in O(n+m) time

• A search algorithm from a vertex v can find all vertices in v’s component
• While there is an unvisited vertex v, search from v to find a new component

Directed Graphs

• A **directed graph is strongly connected** if for every pair of vertices x and y, there is a path from x to y, and there is a path from y to x

Testing if a graph is strongly connected

• Pick a vertex x
 – S₁ = { y | path from x to y }
 – S₂ = { y | path from y to x }
 – If |S₁| = n and |S₂| = n then strongly connected

• Compute S₂ with a “Backwards BFS”
 – Reverse edges and compute a BFS
Strongly Connected Components

A set of vertices C is a strongly connected component if C is a maximal strongly connected subgraph.

Strongly connected components can be found in $O(n+m)$ time.

• But it’s tricky!
• Simpler problem: given a vertex v, compute the vertices in v’s scc in $O(n+m)$ time.

$$S_1 = \{ y \mid \text{path from v to y}\}$$

$$S_2 = \{ y \mid \text{path from y to v}\}$$

Scc containing v is S_1 Intersect S_2

Topological Sort

• Given a set of tasks with precedence constraints, find a linear order of the tasks.

Find a topological order for the following graph

If a graph has a cycle, there is no topological sort

• Consider the first vertex on the cycle in the topological sort.
• It must have an incoming edge.

Definition: A graph is Acyclic if it has no cycles.

Lemma: If a (finite) graph is acyclic, it has a vertex with in-degree 0

• Proof:
 - Pick a vertex v_1, if it has in-degree 0 then done
 - If not, let (v_2, v_1) be an edge, if v_2 has in-degree 0 then done
 - If not, let (v_3, v_2) be an edge . . .
 - If this process continues for more than n steps, we have a repeated vertex, so we have a cycle.
Topological Sort Algorithm

While there exists a vertex v with in-degree 0
 Output vertex v
 Delete the vertex v and all out going edges

Details for O(n+m) implementation

- Maintain a list of vertices of in-degree 0
- Each vertex keeps track of its in-degree
- Update in-degrees and list when edges are removed
- m edge removals at O(1) cost each

Random Graphs

- What is a random graph?
- Choose edges at random
- Interesting model of certain phenomena
- Mathematical study
- Useful inputs for graph algorithms

Model of Random Graphs

- Undirected Graphs
 - Random Graph with n vertices and m edges, \(G_m \)
 - Random Graph with n vertices where each edge has probability \(p \), \(G_p \)
 - Models are similar when \(p = \frac{2m}{n(n-1)} \)

```csharp
for (int i = 0; i < n - 1; i++)
    for (int j = i + 1; j < n; j++)
        if (random.NextDouble() < p)
            AddEdge(i, j);
```
Stable Matching Results

- Averages of 5 runs
- Much better for M than W
- Why is it better for M?
- What is the growth of m-rank and w-rank as a function of n?

<table>
<thead>
<tr>
<th>n</th>
<th>m-rank</th>
<th>w-rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>5.07</td>
<td>98.05</td>
</tr>
<tr>
<td>500</td>
<td>8.57</td>
<td>58.28</td>
</tr>
<tr>
<td>500</td>
<td>6.32</td>
<td>75.87</td>
</tr>
<tr>
<td>500</td>
<td>5.26</td>
<td>90.73</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n</th>
<th>m-rank</th>
<th>w-rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>6.00</td>
<td>166.93</td>
</tr>
<tr>
<td>1000</td>
<td>4.60</td>
<td>135.71</td>
</tr>
<tr>
<td>1000</td>
<td>7.02</td>
<td>155.53</td>
</tr>
<tr>
<td>1000</td>
<td>7.64</td>
<td>120.76</td>
</tr>
<tr>
<td>1000</td>
<td>7.36</td>
<td>137.46</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n</th>
<th>m-rank</th>
<th>w-rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>7.06</td>
<td>267.79</td>
</tr>
<tr>
<td>2000</td>
<td>7.06</td>
<td>267.76</td>
</tr>
<tr>
<td>2000</td>
<td>7.06</td>
<td>267.76</td>
</tr>
<tr>
<td>2000</td>
<td>7.06</td>
<td>267.76</td>
</tr>
</tbody>
</table>

Coupon Collector Problem

- n types of coupons
- Each round you receive a random coupon
- How many rounds until you have received all types of coupons
- \(p_i \) is the probability of getting a new coupon after \(i-1 \) have been collected
- \(t_i \) is the time to receive the \(i \)-th type of coupon after \(i-1 \) have been received

\[
p_i = \frac{n - (i - 1)}{n} \quad \frac{n - i + 1}{n}
\]

\(t_i \) has geometric distribution with expectation

\[
p_i = \frac{n - i + 1}{n}
\]

\[
E(T) = E(t_1 + t_2 + \cdots + t_n)
\]

\[
= E(t_1) + E(t_2) + \cdots + E(t_n)
\]

\[
= \frac{1}{p_1} + \frac{1}{p_2} + \cdots + \frac{1}{p_n}
\]

\[
= \frac{n}{\frac{n}{n-1} + \cdots + \frac{n}{1}}
\]

\[
= n \cdot H_n
\]

\[
E(T) = n \cdot H_n = n \log n + \gamma n + \frac{1}{2} + O(1/n)
\]

Stable Matching and Coupon Collecting

- Assume random preference lists
- Runtime of algorithm determined by number of proposals until all w’s are matched
- Each proposal can be viewed as asking a random w
- Number of proposals corresponds to number of steps in coupon collector problem

There are some technicalities here that are being ignored.