Announcements

- Reading
 - Chapter 3
 - Start on Chapter 4
- Homework 2
 - Programming problem: related to analysis of stable matching

Graph Theory

- $G = (V, E)$
 - V: vertices, $|V| = n$
 - E: edges, $|E| = m$
- Undirected graphs
 - Edges sets of two vertices (u, v)
- Directed graphs
 - Edges ordered pairs (u, v)
- Many other flavors
 - Edge / vertices weights
 - Parallel edges
 - Self loops
- Path: v_1, v_2, \ldots, v_k with (v_i, v_{i+1}) in E
- Simple Path
- Cycle
- Simple Cycle
- Neighborhood $N(v)$
- Distance
- Connectivity
 - Undirected
 - Directed (strong connectivity)
- Trees
 - Rooted
 - Unrooted

Graph Representation

- $V = \{a, b, c, d\}$
- $E = \{(a, b), (a, c), (a, d), (b, d)\}$
- Adjacency List
- Incidence Matrix

Graph search

- Find a path from s to t

```plaintext
S = \{s\}
while S is not empty
    u = Select(S)
    visit u
    foreach v in N(u)
        if v is unvisited
            Add(S, v)
            Pred[v] = u
            if (v == t) then path found
```

Implementation Issues

- Graph with n vertices, m edges
- Operations
 - Lookup edge
 - Add edge
 - Enumeration edges
 - Initialize graph
- Space requirements
Graph Search

Breadth first search

- Explore vertices in layers
 - s in layer 1
 - Neighbors of s in layer 2
 - Neighbors of layer 2 in layer 3...

Breadth First Search

- Build a BFS tree from s

 Initialize $\text{Level}[v] = -1$ for all v;
 $Q = \{s\}$
 $\text{Level}[s] = 1$;
 while Q is not empty
 $u = Q.\text{Dequeue}()$
 foreach v in $\text{N}(u)$
 if ($\text{Level}[v] == -1$)
 $Q.\text{Enqueue}(v)$
 $\text{Pred}[v] = u$
 $\text{Level}[v] = \text{Level}[u] + 1$

Key observation

- All edges go between vertices on the same layer or adjacent layers

Bipartite Graphs

- A graph G is bipartite if G can be partitioned into V_1, V_2 such that all edges go between V_1 and V_2
- A graph is bipartite if it can be two colored

Can this graph be two colored?
Algorithm

- Run BFS
- Color odd layers red, even layers blue
- If no edges between the same layer, the graph is bipartite
- If edge between two vertices of the same layer, then there is an odd cycle, and the graph is not bipartite

Theorem: A graph is bipartite if and only if it has no odd cycles

Lemma 1

- If a graph contains an odd cycle, it is not bipartite

Lemma 2

- If a BFS tree has an *intra-level edge*, then the graph has an odd length cycle

Intra-level edge: both end points are in the same level

Lemma 3

- If a graph has no odd length cycles, then it is bipartite

Graph Search

- Data structure for next vertex to visit determines search order
Graph search

Breadth First Search
\[S = \{s\} \]
\[\text{while } S \text{ is not empty} \]
\[u = \text{Dequeue}(S) \]
\[\text{if } u \text{ is unvisited} \]
\[\text{visit } u \]
\[\text{foreach } v \text{ in } N(u) \]
\[\text{Enqueue}(S, v) \]

Depth First Search
\[S = \{s\} \]
\[\text{while } S \text{ is not empty} \]
\[u = \text{Pop}(S) \]
\[\text{if } u \text{ is unvisited} \]
\[\text{visit } u \]
\[\text{foreach } v \text{ in } N(u) \]
\[\text{Push}(S, v) \]

Breadth First Search
- All edges go between vertices on the same layer or adjacent layers

Depth First Search
- Each edge goes between vertices on the same branch
- No cross edges

Connected Components
- Undirected Graphs

Computing Connected Components in \(O(n+m)\) time
- A search algorithm from a vertex \(v\) can find all vertices in \(v\)'s component
- While there is an unvisited vertex \(v\), search from \(v\) to find a new component

Directed Graphs
- A Strongly Connected Component is a subset of the vertices with paths between every pair of vertices.
Identify the Strongly Connected Components

Strongly connected components can be found in $O(n+m)$ time

- But it’s tricky!
- Simpler problem: given a vertex v, compute the vertices in v’s scc in $O(n+m)$ time

Topological Sort

- Given a set of tasks with precedence constraints, find a linear order of the tasks

Find a topological order for the following graph

If a graph has a cycle, there is no topological sort

- Consider the first vertex on the cycle in the topological sort
- It must have an incoming edge

Lemma: If a (finite) graph is acyclic, it has a vertex with in-degree 0

- Proof:
 - Pick a vertex v_1, if it has in-degree 0 then done
 - If not, let (v_2, v_1) be an edge, if v_2 has in-degree 0 then done
 - If not, let (v_3, v_2) be an edge . . .
 - If this process continues for more than n steps, we have a repeated vertex, so we have a cycle

Definition: A graph is Acyclic if it has no cycles
Topological Sort Algorithm

While there exists a vertex v with in-degree 0:
 Output vertex v
 Delete the vertex v and all outgoing edges

Details for O(n+m) implementation

- Maintain a list of vertices of in-degree 0
- Each vertex keeps track of its in-degree
- Update in-degrees and list when edges are removed
- m edge removals at O(1) cost each