Announcements

• Reading
 – Chapter 3
 – Start on Chapter 4

• Homework 2
 – Programming problem: related to analysis of stable matching
Graph Theory

- $G = (V, E)$
 - V: vertices, $|V| = n$
 - E: edges, $|E| = m$
- Undirected graphs
 - Edges sets of two vertices $\{u, v\}$
- Directed graphs
 - Edges ordered pairs (u, v)
- Many other flavors
 - Edge / vertices weights
 - Parallel edges
 - Self loops
- Path: v_1, v_2, \ldots, v_k, with (v_i, v_{i+1}) in E
 - Simple Path
 - Cycle
 - Simple Cycle
- Neighborhood
 - $N(v)$
- Distance
- Connectivity
 - Undirected
 - Directed (strong connectivity)
- Trees
 - Rooted
 - Unrooted
Graph Representation

V = \{ a, b, c, d\}

E = \{ \{a, b\}, \{a, c\}, \{a, d\}, \{b, d\} \}

Adjacency List

O(n + m) space

Incidence Matrix

O(n^2) space
Implementation Issues

• Graph with n vertices, m edges
• Operations
 – Lookup edge
 – Add edge
 – Enumeration edges
 – Initialize graph
• Space requirements
Graph search

- Find a path from s to t

\[S = \{s\} \]
while \(S \) is not empty
\[u = \text{Select}(S) \]
visit \(u \)
foreach \(v \) in \(N(u) \)
if \(v \) is unvisited
\[\text{Add}(S, v) \]
\[\text{Pred}[v] = u \]
if \((v == t) \) then path found
Graph Search
Breadth first search

• Explore vertices in layers
 – s in layer 1
 – Neighbors of s in layer 2
 – Neighbors of layer 2 in layer 3 . . .
Breadth First Search

• Build a BFS tree from s

Initialize Level[v] = -1 for all v;
Q = {s}
Level[s] = 1;
while Q is not empty
 u = Q.Dequeue()
 foreach v in N(u)
 if (Level[v] == -1)
 Q.Enqueue(v)
 Pred[v] = u
 Level[v] = Level[u] + 1
Key observation

• All edges go between vertices on the same layer or adjacent layers
Bipartite Graphs

- A graph V is bipartite if V can be partitioned into V_1, V_2 such that all edges go between V_1 and V_2
- A graph is bipartite if it can be two colored
Can this graph be two colored?
Algorithm

- Run BFS
- Color odd layers red, even layers blue
- If no edges between the same layer, the graph is bipartite
- If edge between two vertices of the same layer, then there is an odd cycle, and the graph is not bipartite
Theorem: A graph is bipartite if and only if it has no odd cycles
Lemma 1

• If a graph contains an odd cycle, it is not bipartite
Lemma 2

• If a BFS tree has an *intra-level edge*, then the graph has an odd length cycle

Intra-level edge: both end points are in the same level
Lemma 3

• If a graph has no odd length cycles, then it is bipartite
Graph Search

- Data structure for next vertex to visit determines search order
Graph search

Breadth First Search

\[S = \{s\} \]

while S is not empty

\[u = \text{Dequeue}(S) \]

if u is unvisited

\[\text{visit } u \]

foreach v in N(u)

\[\text{Enqueue}(S, v) \]

Depth First Search

\[S = \{s\} \]

while S is not empty

\[u = \text{Pop}(S) \]

if u is unvisited

\[\text{visit } u \]

foreach v in N(u)

\[\text{Push}(S, v) \]
Breadth First Search

- All edges go between vertices on the same layer or adjacent layers
Depth First Search

- Each edge goes between vertices on the same branch
- No cross edges
Connected Components

• Undirected Graphs
Computing Connected Components in O(n+m) time

• A search algorithm from a vertex v can find all vertices in v’s component
• While there is an unvisited vertex v, search from v to find a new component
Directed Graphs

• A Strongly Connected Component is a subset of the vertices with paths between every pair of vertices.
Identify the Strongly Connected Components
Strongly connected components can be found in $O(n+m)$ time

• But it’s tricky!
• Simpler problem: given a vertex v, compute the vertices in v’s scc in $O(n+m)$ time
Topological Sort

- Given a set of tasks with precedence constraints, find a linear order of the tasks
Find a topological order for the following graph
If a graph has a cycle, there is no topological sort

• Consider the first vertex on the cycle in the topological sort
• It must have an incoming edge

Definition: A graph is Acyclic if it has no cycles
Lemma: If a (finite) graph is acyclic, it has a vertex with in-degree 0

• Proof:
 – Pick a vertex v_1, if it has in-degree 0 then done
 – If not, let (v_2, v_1) be an edge, if v_2 has in-degree 0 then done
 – If not, let (v_3, v_2) be an edge . . .
 – If this process continues for more than n steps, we have a repeated vertex, so we have a cycle
Topological Sort Algorithm

While there exists a vertex v with in-degree 0

Output vertex v

Delete the vertex v and all out going edges
Details for O(n+m) implementation

- Maintain a list of vertices of in-degree 0
- Each vertex keeps track of its in-degree
- Update in-degrees and list when edges are removed
- m edge removals at O(1) cost each