Announcements

- HW 1 Due tonight on Gradescope, turn in open until Sunday, 11:59 pm
- HW 2 Available

Worst Case Runtime Function

- Problem P: Given instance I compute a solution S
- A is an algorithm to solve P
- T(I) is the number of steps executed by A on instance I
- T(n) is the maximum of T(I) for all instances of size n

Ignore constant factors

- Constant factors are arbitrary
 - Depend on the implementation
 - Depend on the details of the model
- Determining the constant factors is tedious and provides little insight
- Express run time as $T(n) = O(f(n))$

Formalizing growth rates

- $T(n) = O(f(n)) \quad [T : \mathbb{Z}^+ \rightarrow \mathbb{R}^+]$
 - If n is sufficiently large, $T(n)$ is bounded by a constant multiple of $f(n)$
 - Exist c, n_0, such that for $n > n_0$, $T(n) < c f(n)$
- $T(n) = \Omega(f(n))$
 - $T(n)$ is at least a constant multiple of $f(n)$
 - There exists an n_0, and $\varepsilon > 0$ such that $T(n) > \varepsilon f(n)$ for all $n > n_0$
- $T(n) = \Theta(f(n))$ if $T(n)$ is $O(f(n))$ and $T(n)$ is $\Omega(f(n))$

Efficient Algorithms

- Polynomial Time (P): Class of all problems that can be solved with algorithms that have polynomial runtime functions
- Polynomial Time has been a very successful tool for theoretical computer science
- Problems in Polynomial Time often have practical solutions
Graph Theory

• $G = (V, E)$
 – V – vertices
 – E – edges
• Undirected graphs
 – Edges sets of two vertices $\{u, v\}$
• Directed graphs
 – Edges ordered pairs (u, v)
• Many other flavors
 – Edge / vertices weights
 – Parallel edges
 – Self loops

Definitions

• Path: v_1, v_2, \ldots, v_k, with $(v_i, v_{i+1}) \in E$
 – Simple Path
 – Cycle
 – Simple Cycle
• Neighborhood
 – $N(v)$
• Distance
• Connectivity
 – Undirected
 – Directed (strong connectivity)
• Trees
 – Rooted
 – Unrooted

Graph Representation

\[V = \{a, b, c, d\} \]
\[E = \{(a, b), (a, c), (a, d), (b, d)\} \]

Implementation Issues

• Graph with n vertices, m edges
• Operations
 – Lookup edge
 – Add edge
 – Enumeration edges
 – Initialize graph
• Space requirements

Graph search

• Find a path from s to t

```
S = \{s\}
while S is not empty
  u = Select(S)
  visit u
  foreach v in $N(u)$
    if v is unvisited
      Add(S, v)
      Pred[v] = u
    if (v = t) then path found
```

Breadth first search

• Explore vertices in layers
 – s in layer 1
 – Neighbors of s in layer 2
 – Neighbors of layer 2 in layer 3 . . .
Key observation
• All edges go between vertices on the same layer or adjacent layers

Bipartite Graphs
• A graph V is bipartite if V can be partitioned into V_1, V_2 such that all edges go between V_1 and V_2
• A graph is bipartite if it can be two colored

Can this graph be two colored?

Algorithm
• Run BFS
• Color odd layers red, even layers blue
• If no edges between the same layer, the graph is bipartite
• If edge between two vertices of the same layer, then there is an odd cycle, and the graph is not bipartite

Theorem: A graph is bipartite if and only if it has no odd cycles

Lemma 1
• If a graph contains an odd cycle, it is not bipartite
Lemma 2

- If a BFS tree has an *intra-level edge*, then the graph has an odd length cycle

Intra-level edge: both end points are in the same level

Lemma 3

- If a graph has no odd length cycles, then it is bipartite

Graph Search

- Data structure for next vertex to visit determines search order

Breadth First Search

- All edges go between vertices on the same layer or adjacent layers

Depth First Search

- Each edge goes between vertices on the same branch
- No cross edges