Programming Problem 1 (10 Points):
The Chvatal-Sankoff constants are mathematical constants that describe the length of the longest common subsequences of random strings. Given parameters n and k, choose two random length n strings A and B from the same k-symbol alphabet, with each character chosen uniformly at random. Let $\lambda_{n,k}$ be the random variable whose value is the length of the longest common subsequence of A and B. Let $E[\lambda_{n,k}]$ denote the expectation of $\lambda_{n,k}$. The Chvatal-Sankoff constant γ_k is defined at

$$\gamma_k = \lim_{n \to \infty} \frac{E[\lambda_{n,k}]}{n}.$$

Experimentally determine (by implementing an LCS algorithm), the smallest value of k, such that $\gamma_k < \frac{2}{5}$. In other words determine how large an alphabet needs to be so that the expected length of the LCS of two random strings is less than 40% the length of the strings.

a.) Generate a table of estimates for γ_k. You should choose values of n that are large enough so that you are seeing only a small variation. The table values should be the average of a number of runs. You should do values of k up to the point where $\gamma_k < \frac{2}{5}$.

b.) Provide your algorithmic code. (You will only need to compute the lengths of the LCS, not the string giving the LCS.)

Problem 2 (10 points):
Answer the following questions with “yes”, “no”, or “unknown, as this would resolve the P vs. NP question.” Give a brief explanation of your answer.

Define the decision version of the Interval Scheduling Problem as follows: Given a collection of intervals on a time-line, and a bound k, does the collection contain a subset of nonoverlapping intervals of size at least k?

a) Question: Is it the case that Interval Scheduling \leq_P Vertex Cover?

b) Question: Is it the case that Independent Set \leq_P Interval Scheduling?
Problem 3 (10 points):
Argue that the following problems are in NP. (Note: just show they are in NP, this question is not asking you to show they are NP-Complete.)

a) The *Clique Problem*. A clique in an undirected graph $G = (V, E)$ is a subset $U \subseteq V$, such that there is an edge in E between every pair of vertices x, y in U. The Clique Problem is: Given a graph $G = (V, E)$ and an integer K, does there exist a clique of size at least K.

b) The *Shortest-Paths Problem*. The formal version (as a yes-no problem): Given a directed graph $G = (V, E)$ with integer edge lengths, distinguished vertices s and t, and an integer K, does there exist a path of length at most K between s and t.

b) The *4-Dimensional Matching Problem*. (Defined in Problem 4.)

d) The *Zero-Weight-Cycle Problem*. (Defined in Problem 5.)

Problem 4 (10 points):
(Kleinberg-Tardos, Page 507, Problem 7). Since the 3-Dimensional Matching Problem is NP-complete, it is natural to expect that the corresponding 4-Dimensional Matching Problem is at least as hard. Let us define 4-Dimensional Matching as follows. Given sets W, X, Y, Z, each of size n, and a collection C of ordered 4-tuples of the form (w_i, x_j, y_k, z_l), do there exist n 4-tuples from C so that no two have an element in common?
Prove that 4-Dimensional Matching is NP-Complete.

Problem 5 (10 Points):
(Kleinberg-Tardos, Page 513, Problem 17). You are given a directed graph $G = (V, E)$ with weights w_e on its edges $e \in E$. The weights can be negative or positive. The Zero-Weight-Cycle Problem is to decide if there is a simple cycle in G so that the sum of the edge weights on this cycle is exactly 0. Prove that the Zero-Weight-Cycle problem is NP-Complete. (Hint: Hamiltonian PATH)