NP-Completeness Proofs

- Prove that problem X is NP-Complete
 - Show that X is in NP (usually easy)
 - Pick a known NP complete problem Y
 - Show Y $\leq_P X$

Announcements

- Final Exam: Monday, December 11, 8:30 AM
 - One Hour Fifty Minutes
 - Comprehensive (but roughly 2/3rds post midterm)
 - Topics will include: recurrences, dynamic programming, graph algorithms, network flow

Daily Announcements

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fri, Dec 1</td>
<td>Net Flow Applications</td>
</tr>
<tr>
<td>Mon, Dec 4</td>
<td>Net Flow Applications + NP-Completeness</td>
</tr>
<tr>
<td>Wed, Dec 6</td>
<td>NP-Completeness</td>
</tr>
<tr>
<td>Fri, Dec 8</td>
<td>NP-Completeness and Beyond</td>
</tr>
<tr>
<td>Mon, Dec 11</td>
<td>Final Exam</td>
</tr>
</tbody>
</table>

Reducibility Among Combinatorial Problems

- Circuit Sat \leq_P 3-SAT
- 3-SAT \leq_P Independent Set
- 3-SAT \leq_P Vertex Cover
- Independent Set \leq_P Clique
- 3-SAT \leq_P Hamiltonian Circuit
- Hamiltonian Circuit \leq_P Traveling Salesman
- 3-SAT \leq_P Integer Linear Programming
- 3-SAT \leq_P Graph Coloring
- 3-SAT \leq_P Subset Sum
- Subset Sum \leq_P Scheduling with Release times and deadlines

Populating the NP-Completeness Universe

Coping with NP-Completeness

- Approximation Algorithms
- Exact solution via Branch and Bound
- Local Search

I can't find an efficient algorithm, but neither can all these famous people.
Multiprocessor Scheduling

- Unit execution tasks
- Precedence graph
- K-Processors
- Polynomial time for $k=2$
- Open for $k = \text{constant}$
- NP-complete is k is part of the problem

Highest level first is 2-Optimal

Choose k items on the highest level
Claim: number of rounds is at least twice the optimal.

Christofides TSP Algorithm

- Undirected graph satisfying triangle inequality
 1. Find MST
 2. Add additional edges so that all vertices have even degree
 3. Build Eulerian Tour

3/2 Approximation

Branch and Bound

- Brute force search – tree of all possible solutions
- Branch and bound – compute a lower bound on all possible extensions
 - Prune sub-trees that cannot be better than optimal

Branch and Bound for TSP

- Enumerate all possible paths
- Lower bound. Current path cost plus MST of remaining points
- Euclidean TSP
 - Points on the plane with Euclidean Distance
 - Sample data set: State Capitals
Local Optimization

- Improve an optimization problem by local improvement
 - Neighborhood structure on solutions
 - Travelling Salesman 2-Opt (or K-Opt)
 - Independent Set Local Replacement

What we don’t know

- P vs. NP

If P ≠ NP, is there anything in between

- Yes, Ladner [1975]
- Problems not known to be in P or NP Complete
 - Factorization
 - Discrete Log
 - Graph Isomorphism

Complexity Theory

- Computational requirements to recognize languages
- Models of Computation
- Resources
- Hierarchies

Time complexity

- P: (Deterministic) Polynomial Time
- NP: Non-deterministic Polynomial Time
- EXP: Exponential Time

Space Complexity

- Amount of Space (Exclusive of Input)
 - L: Logspace, problems that can be solved in O(log n) space for input of size n
 - Related to Parallel Complexity
 - PSPACE, problems that can be required in a polynomial amount of space
So what is beyond NP?

• Given a Boolean formula, is it true for some choice of inputs

• Given a Boolean formula, is it true for all choices of inputs

Problems beyond NP

• Exact TSP, Given a graph with edge lengths and an integer K, does the minimum tour have length K

• Minimum circuit, Given a circuit C, is it true that there is no smaller circuit that computes the same function a C

Polynomial Hierarchy

• Level 1
 – \(\exists X_1 \Phi(X_1), \forall X_1 \Phi(X_1) \)

• Level 2
 – \(\forall X_1 \exists X_2 \Phi(X_1,X_2), \exists X_1 \forall X_2 \Phi(X_1,X_2) \)

• Level 3
 – \(\forall X_1 \exists X_2 \forall X_3 \Phi(X_1,X_2,X_3), \exists X_1 \forall X_2 \exists X_3 \Phi(X_1,X_2,X_3) \)

Polynomial Space

• Quantified Boolean Expressions
 – \(\exists X_1 \forall X_2 \exists X_3 \ldots \exists X_n \forall X_n \Phi(X_1,X_2,X_3 \ldots X_n,X_n) \)

• Space bounded games
 – Competitive Facility Location Problem
 – N x N Chess

• Counting problems
 – The number of Hamiltonian Circuits

N x N Chess
Even Harder Problems

```java
public int[] RecolorSwap(int[] coloring) {
    int k = maxColor(coloring);
    for (int v = 0; v < nVertices; v++) {
        if (coloring[v] == k) {
            int[] nbdColorCount = ColorCount(v, k, coloring);
            List<Edge> edges1 = vertices[v].Edges;
            foreach (Edge e1 in edges1) {
                int w = e1.Head;
                if (nbdColorCount[coloring[w]] == 1)
                    if (RecolorSwap(v, w, k, coloring))
                        break;
            }
        }
    }
    return coloring;
}
```

Is this code correct?

Halting Problem

- Given a program P that does not take any inputs, does P eventually exit?

Impossibility of solving the Halting Problem

Suppose Halt(P) returns true if P halts, and false otherwise

Consider the program G:

```java
Define G {
    if (Halt(G)) {
        while (true);
    }
    else {
        exit();
    }
}
```

What is Halt(G)?

Undecidable Problems

- The Halting Problem is undecidable
- Impossible problems are hard...