Announcements

- Homework 9
- Exam practice problems on course homepage
- Final Exam: Monday, December 11, 8:30 AM – One Hour Fifty Minutes

Fri, Dec 1 Net-Flow Applications
Mon, Dec 4 Net-Flow Applications – NP-Completeness
Wed, Dec 6 NP-Completeness
Fri, Dec 8 NP-Completeness
Mon, Dec 11 Final Exam

Key Idea: Problem Reduction

- Use an algorithm for problem Y to solve problem X.
 - This means that problem Y is more difficult than problem X
- Terminology: X is reducible to Y
 - Notation: \(X \leq_P Y \)

The Universe

- P: Polynomial Time
- NP: Nondeterministic Polynomial Time
 - Problems where a “yes” answer can be verified in polynomial time
- NP-Complete
 - The hardest problems in NP

Polynomial time reductions

- X is Polynomial Time Reducible to Y
 - Solve problem X with a polynomial number of computation steps and a polynomial number of calls to a black box that solves Y
 - Notations: \(X \leq_P Y \)
- Usually, this is converting an input of X to an input for Y, solving Y, and then converting the answer back

Composability Lemma

- If \(X \leq_P Y \) and \(Y \leq_P Z \) then \(X \leq_P Z \)
Lemmas

- Suppose $X \leq_P Y$. If Y can be solved in polynomial time, then X can be solved in polynomial time.

- Suppose $X \leq_P Y$. If X cannot be solved in polynomial time, then Y cannot be solved in polynomial time.

NP-Completeness

- A problem X is NP-complete if
 - X is in NP
 - For every Y in NP, $Y \leq_P X$

- X is a “hardest” problem in NP

- If X is NP-Complete, Z is in NP and $X \leq_P Z$
 - Then Z is NP-Complete

Cook’s Theorem

- There is an NP Complete problem
 - The Circuit Satisfiability Problem

Circuit SAT

- Find a satisfying assignment

Populating the NP-Completeness Universe

- Circuit Sat \leq_P 3-SAT
- 3-SAT \leq_P Independent Set
- 3-SAT \leq_P Vertex Cover
- Independent Set \leq_P Clique
- 3-SAT \leq_P Hamiltonian Circuit
- Hamiltonian Circuit \leq_P Traveling Salesman
- 3-SAT \leq_P Integer Linear Programming
- 3-SAT \leq_P Graph Coloring
- 3-SAT \leq_P Subset Sum
- Subset Sum \leq_P Scheduling with Release times and deadlines

NP Completeness Proofs

- If X is NP-Complete, Z is in NP and $X \leq_P Z$
 - Then Z is NP-Complete
Graph Coloring

- NP-Complete
 - Graph 3-coloring

- Polynomial
 - Graph 2-Coloring

Graph 4-Coloring

- Given a graph G, can G be colored with 4 colors?
- Prove 4-Coloring is NP Complete

Proof: 3-Coloring \leq_p 4-Coloring

- Show that you can 3-Color a graph if you have an algorithm to 4-Color a graph
How to prove $P = NP$

If X is NP-Complete and X can be solved in polynomial time, then $P = NP$

Satisfiability

- **Literal**: A Boolean variable or its negation. x_i or $\overline{x_i}$
- **Clause**: A disjunction of literals. $C_j = x_i \lor \overline{x_i}$
- **Conjunctive normal form**: A propositional formula Φ that is the conjunction of clauses. $\Phi = C_1 \land C_2 \land C_3 \land C_4$

SAT: Given CNF formula Φ, does it have a satisfying truth assignment?

3-SAT: SAT where each clause contains exactly 3 literals.

Matching

- **Two dimensional matching**
- **Three dimensional matching (3DM)**

Augmenting Path Algorithm for Matching

- Find augmenting path in $O(m)$ time
- n phases of augmentation
- $O(nm)$ time algorithm for matching

3-SAT \leq_p 3DM

- **Truth Setting Gadget**
- **Clause gadget for ($x \lor y \lor z$)**
- **Garbage Collection Gadget** (Many copies)
Exact Cover (sets of size 3) \(\text{XC3} \)

Given a collection of sets of size 3 of a domain of size 3N, is there a sub-collection of N sets that cover the sets

\(\{A, B, C\}, \{D, E, F\}, \{A, B, G\}, \{A, C, I\}, \{B, D, F\}, \{C, E, I\}, \{C, D, H\}, \{D, G, I\}, \{D, F, H\}, \{E, H, I\} \)

\(3\text{DM} \leq_p \text{XC3} \)

Graph Coloring

- NP-Complete
 - Graph K-coloring
 - Graph 3-coloring
- Polynomial
 - Graph 2-coloring

3-SAT \(\leq_p \) 3 Colorability

Number Problems

- Subset sum problem
 - Given natural numbers \(w_1, \ldots, w_n \) and a target number \(W \), is there a subset that adds up to exactly \(W \)?
- Subset sum problem is NP-Complete
- Subset Sum problem can be solved in \(O(nW) \) time

XC3 \(\leq_p \) SUBSET SUM

Idea: Represent each set as a large integer, where the element \(x_i \) is encoded as \(D_i \) where \(D \) is an integer

\(\{x_1, x_2, x_3\} \rightarrow D^3 + D^2 + D^1 \)

Does there exist a subset that sums to exactly \(D^1 + D^2 + D^3 + \cdots + D^{m-1} + D^n \)?

Detail: How large is \(D \)? We need to make sure that we do not have any carries, so we can choose \(D = m+1 \), where \(m \) is the number of sets.

Integer Linear Programming

- Linear Programming – maximize a linear function subject to linear constraints
- Integer Linear Programming – require an integer solution
- NP Completeness reduction from 3-SAT

Use 0-1 variables for \(x_i \)’s

Constraint for clause:

\(x_i + (1-x_j) + (1-x_k) > 0 \)
Scheduling with release times and deadlines (RD-Sched)

- Tasks, \(\{ t_1, t_2, \ldots, t_n \} \)
- Task \(t_j \) has a length \(l_j \), release time \(r_j \) and deadline \(d_j \)
- Once a task is started, it is worked on without interruption until it is completed
- Can all tasks be completed satisfying constraints?

Subset Sum \(<_P\) RD-Sched

- Subset Sum Problem
 - \(\{ s_1, s_2, \ldots, s_n \} \), integer \(K_1 \)
 - Does there exist a subset that sums to \(K_1 \)?
 - Assume the total sums to \(K_2 \)

Reduction

- Tasks \(\{ t_1, t_2, \ldots, t_n, x \} \)
- \(t_j \) has length \(s_j \), release 0, deadline \(K_2 + 1 \)
- \(x \) has length 1, release \(K_1 \), deadline \(K_1 + 1 \)

Friday: NP-Completeness and Beyond!