Announcements

- Homework 8, Due Wednesday, Nov 29
- Homework 9, Due Friday, Dec 8

Network Flow

Outline

- Network flow definitions
- Flow examples
- Augmenting Paths
- Residual Graph
- Ford Fulkerson Algorithm
- Cuts
- Maxflow-MinCut Theorem

Network Flow Definitions

- Capacity
- Source, Sink
- Capacity Condition
- Conservation Condition
- Value of a flow

Flow Example
Network Flow Definitions

- **Flowgraph**: Directed graph with distinguished vertices \(s \) (source) and \(t \) (sink)
- **Capacities on the edges**, \(c(e) \geq 0 \)
- **Problem**, assign flows \(f(e) \) to the edges such that:
 - \(0 \leq f(e) \leq c(e) \)
 - Flow is conserved at vertices other than \(s \) and \(t \)
 - Flow conservation: flow going into a vertex equals the flow going out
 - The flow leaving the source is as large as possible

Find a maximum flow

Residual Graph

- **Flow graph showing the remaining capacity**
- **Flow graph** \(G \), **Residual Graph** \(G_R \)
 - \(G \): edge \(e \) from \(u \) to \(v \) with capacity \(c \) and flow \(f \)
 - \(G_R \): edge \(e' \) from \(u \) to \(v \) with capacity \(c - f \)
 - \(G_R \): edge \(e'' \) from \(v \) to \(u \) with capacity \(f \)
Augmenting Path Algorithm

- Augmenting path
 - Vertices v_1, v_2, \ldots, v_k
 - $v_1 = s$, $v_k = t$
 - Possible to add b units of flow between v_j and v_{j+1} for $j = 1 \ldots k - 1$

Find two augmenting paths

Augmenting Path Lemma

- Let $P = v_1, v_2, \ldots, v_k$ be a path from s to t with minimum capacity b in the residual graph.
- b units of flow can be added along the path P in the flow graph.

Proof

- Add b units of flow along the path P
 - What do we need to verify to show we have a valid flow after we do this?

Ford-Fulkerson Algorithm (1956)

while not done
 Construct residual graph G_R
 Find an s-t path P in G_R with capacity $b > 0$
 Add b units along in G

If the sum of the capacities of edges leaving S is at most C, then the algorithm takes at most C iterations