CSE 417 Algorithms and Complexity
Autumn 2023
Lecture 22
Longest Common Subsequence
Announcements

• Lecture plans
 – Monday: Longest Common Subsequence
 – Wednesday: Shortest Paths
 – Friday: No Class
 – After Thanksgiving: Network Flow + NP Completeness

• Homework plans
 – HW 8, Due Wednesday, November 29
 – HW 9, Due Friday, December 8
Last week, subset sum

- Given integers \{w_1, \ldots, w_n\} and an integer K
- Find a subset that is as large as possible that does not exceed K
- \text{Opt}[j, K] the largest subset of \{w_1, \ldots, w_j\} that sums to at most K
- \text{Opt}[j, K] = \max(\text{Opt}[j-1, K], \text{Opt}[j-1, K-w_j] + w_j)

\begin{align*}
\text{for } j &= 1 \text{ to } n \\
&\quad \text{for } k = 1 \text{ to } W \\
&\quad \text{Opt}[j, k] = \max(\text{Opt}[j-1, k], \text{Opt}[j-1, k-w_j] + w_j)
\end{align*}
Two dimensional dynamic programming

Subset sum and knapsack

\[\text{Opt}[j, K] = \max(\text{Opt}[j - 1, K], \text{Opt}[j - 1, K - w_j] + w_j) \]

\[\text{Opt}[j, K] = \max(\text{Opt}[j - 1, K], \text{Opt}[j - 1, K - w_j] + v_j) \]
Reducing dimensions

- Computing values in the array only requires the previous row
 - Easy to reduce this to just tracking two rows
 - And sometimes can be implemented in a single row
- Space savings is significant in practice
- Reconstructing values is harder
Longest Common Subsequence

• $C=c_1 \ldots c_g$ is a subsequence of $A=a_1 \ldots a_m$ if C can be obtained by removing elements from A (but retaining order)

• $LCS(A, B)$: A maximum length sequence that is a subsequence of both A and B

occurranec attacggct

occurrence tacgacca
Determine the LCS of the following strings

BARTHOLEMEWSIMPSON

KRUSTYTHECLOWN
String Alignment Problem

- Align sequences with gaps

 CAT TGA AT

 CAGAT AGGA

- Charge δ_x if character x is unmatched
- Charge γ_{xy} if character x is matched to character y

Note: the problem is often expressed as a minimization problem, with $\gamma_{xx} = 0$ and $\delta_x > 0$.
Recursive Version

LCS(a_1a_2...a_m, b_1b_2...b_n) {
 if (a_m == b_n)
 return LCS(a_1a_2...a_{m-1}, b_1b_2...b_{n-1}) + 1;
 else
 return max(LCS(a_1a_2...a_{m-1}, b_1b_2...b_n),
 LCS(a_1a_2...a_m, b_1b_2...b_{n-1}));
}
LCS Optimization

• $A = a_1a_2...a_m$
• $B = b_1b_2...b_n$

• $\text{Opt}[j, k]$ is the length of $\text{LCS}(a_1a_2...a_j, b_1b_2...b_k)$
Optimization recurrence

If $a_j = b_k$, $\text{Opt}[j,k] = 1 + \text{Opt}[j-1, k-1]$

If $a_j \neq b_k$, $\text{Opt}[j,k] = \max(\text{Opt}[j-1,k], \text{Opt}[j,k-1])$
Give the Optimization Recurrence for the String Alignment Problem

- Charge δ_x if character x is unmatched
- Charge γ_{xy} if character x is matched to character y

$$\text{Opt}[j, k] =$$

Let $a_j = x$ and $b_k = y$
Express as minimization
String edit with Typo Distance

- Find closest dictionary word to typed word
- $\text{Dist}('a', 's') = 1$
- $\text{Dist}('a', 'u') = 6$
- Capture the likelihood of mistyping characters
Dynamic Programming Computation
Code to compute Opt[n, m]

for (int i = 0; i < n; i++)
 for (int j = 0; j < m; j++)
 if (A[i] == B[j])
 Opt[i,j] = Opt[i-1, j-1] + 1;
 else if (Opt[i-1, j] >= Opt[i, j-1])
 Opt[i, j] := Opt[i-1, j];
 else
 Opt[i, j] := Opt[i, j-1];
Storing the path information

\[A[1..m], \ B[1..n] \]

for \(i := 1 \) to \(m \) \hspace{1cm} \text{Opt}[i, 0] := 0;
for \(j := 1 \) to \(n \) \hspace{1cm} \text{Opt}[0,j] := 0;
\text{Opt}[0,0] := 0;
for \(i := 1 \) to \(m \)
 for \(j := 1 \) to \(n \)
 if \(A[i] = B[j] \) \hspace{1cm} \{ \text{Opt}[i,j] := 1 + \text{Opt}[i-1,j-1]; \ \text{Best}[i,j] := \text{Diag}; \}
 else if \(\text{Opt}[i-1,j] \geq \text{Opt}[i,j-1] \)
 \{ \text{Opt}[i,j] := \text{Opt}[i-1,j], \ \text{Best}[i,j] := \text{Left}; \}
 else \hspace{1cm} \{ \text{Opt}[i,j] := \text{Opt}[i,j-1], \ \text{Best}[i,j] := \text{Down}; \}
Reconstructing Path from Distances
How good is this algorithm?

• Is it feasible to compute the LCS of two strings of length 300,000 on a standard desktop PC? Why or why not.
public int ComputeLCS() {
 int n = str1.Length;
 int m = str2.Length;

 int[,] opt = new int[n + 1, m + 1];
 for (int i = 0; i <= n; i++)
 opt[i, 0] = 0;
 for (int j = 0; j <= m; j++)
 opt[0, j] = 0;

 for (int i = 1; i <= n; i++)
 for (int j = 1; j <= m; j++)
 if (str1[i - 1] == str2[j - 1])
 opt[i, j] = opt[i - 1, j - 1] + 1;
 else if (opt[i - 1, j] >= opt[i, j - 1])
 opt[i, j] = opt[i - 1, j];
 else
 opt[i, j] = opt[i, j - 1];

 return opt[n, m];
}
N = 17000

Runtime should be about 5 seconds*

* Personal PC, 10 years old
public int SpaceEfficientLCS() {
 int n = str1.Length;
 int m = str2.Length;
 int[] prevRow = new int[m + 1];
 int[] currRow = new int[m + 1];

 for (int j = 0; j <= m; j++)
 prevRow[j] = 0;

 for (int i = 1; i <= n; i++) {
 currRow[0] = 0;
 for (int j = 1; j <= m; j++) {
 if (str1[i - 1] == str2[j - 1])
 currRow[j] = prevRow[j - 1] + 1;
 else if (prevRow[j] >= currRow[j - 1])
 currRow[j] = prevRow[j];
 else
 currRow[j] = currRow[j - 1];
 }
 for (int j = 1; j <= m; j++)
 prevRow[j] = currRow[j];
 }

 return currRow[m];
}
N = 300000

N: 10000 Base 2 Length: 8096 Gamma: 0.8096 Runtime:00:00:01.86
N: 20000 Base 2 Length: 16231 Gamma: 0.81155 Runtime:00:00:07.45
N: 30000 Base 2 Length: 24317 Gamma: 0.8105667 Runtime:00:00:16.82
N: 40000 Base 2 Length: 32510 Gamma: 0.81275 Runtime:00:00:29.84
N: 50000 Base 2 Length: 40563 Gamma: 0.81126 Runtime:00:00:46.78
N: 60000 Base 2 Length: 48700 Gamma: 0.8116667 Runtime:00:01:08.06
N: 70000 Base 2 Length: 56824 Gamma: 0.8117715 Runtime:00:01:33.36

N: 300000 Base 2 Length: 243605 Gamma: 0.8120167 Runtime:00:28:07.32
Observations about the Algorithm

• The computation can be done in $O(m+n)$ space if we only need one column of the Opt values or Best Values

• The computation requires $O(nm)$ space if we store all of the string information
Computing LCS in $O(nm)$ time and $O(n+m)$ space

- Divide and conquer algorithm
- Recomputing values used to save space

- Section 6.7 of the text, but we will not have time to cover in detail (so you are not responsible for section 6.7)
Divide and Conquer Algorithm

• Where does the best path cross the middle column?

• For a fixed i, and for each j, compute the LCS that has a_i matched with b_j
Algorithm Analysis

- $T(m, n) = T(m/2, j) + T(m/2, n-j) + cnm$
- Solution: $T(m, n) \leq 2cnm$