Announcements

- Homework 8: Due Wednesday, Nov 29
- Homework 9: Due Friday, Dec 8
- Dynamic Programming Reading:
 - 6.1-6.2, Weighted Interval Scheduling
 - Path Counting, Paragraphing
 - 6.4 Knapsack and Subset Sum
 - 6.6 String Alignment
 - 6.7* String Alignment in linear space
 - 6.8 Shortest Paths (again)
 - 6.9 Negative cost cycles
 - How to make an infinite amount of money

What is the largest sum you can make of the following integers that is ≤ 20

{4, 5, 8, 10, 13, 14, 17, 18, 21, 23, 28, 31, 37}

What is the largest sum you can make of the following integers that is ≤ 2000

{78, 101, 122, 133, 137, 158, 189, 201, 220, 222, 267, 271, 281, 289, 296, 297, 301, 311, 315, 321, 322, 341, 349, 353, 361, 385, 396}

Subset Sum Problem

- Given integers \{w_1, \ldots, w_j\} and an integer K
- Find a subset that is as large as possible that does not exceed K
- Dynamic Programming: Express as an optimization over sub-problems.
- New idea: Represent at a sub-problems depending on K and n
 - Two dimensional grid

Subset Sum Optimization

Opt[j, K] the largest subset of \{w_1, \ldots, w_j\} that sums to at most K

Opt[j, K] = max(Opt[j - 1, K], Opt[j - 1, K - w_j] + w_j)
Subset Sum Grid

\[\text{Opt}[j, K] = \max(\text{Opt}[j-1, K], \text{Opt}[j-1, K-w_j] + w_j) \]

\[
\begin{array}{|c|c|c|c|c|c|c|c|c|c|}
\hline
4 & 3 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}
\]

\{2, 4, 7, 10\}

Knapsack Problem

- Items have weights and values
- The problem is to maximize total value subject to a bound on weight
- Items \(\{I_1, I_2, \ldots, I_n\} \)
 - Weights \(\{w_1, w_2, \ldots, w_n\} \)
 - Values \(\{v_1, v_2, \ldots, v_n\} \)
 - Bound \(K \)
- Find set \(S \) of indices to:
 - Maximize \(\sum_{i \in S} v_i \) such that \(\sum_{i \in S} w_i \leq K \)

Knapsack Recurrence

\[\text{Opt}[j, K] = \max(\text{Opt}[j-1, K], \text{Opt}[j-1, K-w_j] + v_j) \]

Weights \(\{2, 4, 7, 10\} \) Values: \(\{3, 5, 9, 16\} \)
Knapsack Grid

\[
\text{Opt}[j, K] = \max(\text{Opt}[j-1, K], \text{Opt}[j-1, K-w_j] + v_j)
\]

Weights \{2, 4, 7, 10\} Values: \{3, 5, 9, 16\}

Alternate approach for Subset Sum

- Alternate formulation of Subset Sum dynamic programming algorithm
 - Sum[i, K] = true if there is a subset of \{w_1,...,w_i\} that sums to exactly K, false otherwise
 - Sum[i, K] = Sum[i-1, K] OR Sum[i-1, K-w_i]
 - Sum[0, 0] = true; Sum[i, 0] = false for i > 0

To allow for negative numbers, we need to fill in the array between \(K_{\text{min}}\) and \(K_{\text{max}}\)

Run time for Subset Sum

- With \(n\) items and target sum \(K\), the run time is \(O(nK)\)
- If \(K = 1,000,000,000,000,000,000,000,000\) this is very slow
- Alternate brute force algorithm: examine all subsets: \(O(n^2)\)
- Point of confusion: Subset sum is NP Complete

Two dimensional dynamic programming

Subset sum and knapsack

\[
\text{Opt}[j, K] = \max(\text{Opt}[j-1, K], \text{Opt}[j-1, K-w_j] + w_j)
\]

Reducing dimensions

- Computing values in the array only requires the previous row
 - Easy to reduce this to just tracking two rows
 - And sometimes can be implemented in a single row
- Space savings is significant in practice
- Reconstructing values is harder

Longest Common Subsequence

- \(C=c_1...c_g\) is a subsequence of \(A=a_1...a_m\) if \(C\) can be obtained by removing elements from \(A\) (but retaining order)
- LCS(A, B): A maximum length sequence that is a subsequence of both A and B

\(\text{occurrence}\) \(\text{attacggct}\)
\(\text{occurrence}\) \(\text{tacgacca}\)
Determine the LCS of the following strings

BARTHOLEMEWSIMPSON

KRUSTYTHECLOWN

String Alignment Problem

- Align sequences with gaps

 CAT TGA AT

 CAGAT AGGA

- Charge δ_x if character x is unmatched
- Charge γ_{xy} if character x is matched to character y

Note: the problem is often expressed as a minimization problem, with $\gamma_{xx} = 0$ and $\delta_x > 0$

LCS Optimization

- $A = a_1a_2...a_m$
- $B = b_1b_2...b_n$

- $\text{Opt}[j,k]$ is the length of LCS($a_1a_2...a_j, b_1b_2...b_k$)

Optimization recurrence

If $a_j = b_k$, $\text{Opt}[j,k] = 1 + \text{Opt}[j-1, k-1]$

If $a_j \neq b_k$, $\text{Opt}[j,k] = \max(\text{Opt}[j-1, k], \text{Opt}[j, k-1])$