CSE 417 Algorithms and Complexity
Lecture 19, Autumn 2023
Dynamic Programming

Announcements
- Dynamic Programming Reading:
 - 6.1-6.2, Weighted Interval Scheduling
 - 6.4 Knapsack and Subset Sum
 - 6.6 String Alignment
 - 6.7* String Alignment in linear space
 - 6.8 Shortest Paths (again)
 - 6.9 Negative cost cycles
 - How to make an infinite amount of money
- Homework 7

Dynamic Programming
- The most important algorithmic technique covered in CSE 417
- Key ideas
 - Express solution in terms of a polynomial number of sub problems
 - Order sub problems to avoid recomputation

Recursion vs Iteration

Counting Rabbits
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, …

F₀ = 0; F₁ = 1; Fₙ = Fₙ₋₁ + Fₙ₋₂

\[
\text{Factorial}(n) = \begin{cases}
1 & \text{if } (n = 0) \\
1 & \text{if } (n = 1) \\
\text{else if } (n = 1) \\
\text{else return } F_i(n-1) + F_i(n-2); \\
\end{cases}
\]

\[
\text{Factorial}(n) = \begin{cases}
1 & \text{if } (n = 0) \\
1 & \text{if } (n = 1) \\
1 & \text{for } (i = 2; i <= n; i++) \\
\text{return v;}
\end{cases}
\]
Fibonacci with Memoization

```java
Fib(n){
    if (n = 0)
        return 0;
    else if (n = 1)
        return 1;
    else
        return Fib(n-1) + Fib(n-2);
}
```

Reordering computation

```java
Fib(n){
    int[] F = new [n+1]
    F[0] = 0;
    F[1] = 1;
    for (i = 2; i <= n; i++)
        F[i] = F[i-1] + F[i-2];
    return F[n];
}
```

Dynamic Programming

- Weighted Interval Scheduling
- Given a collection of intervals \(I_1, \ldots, I_n\) with weights \(w_1, \ldots, w_n\), choose a maximum weight set of non-overlapping intervals

```
<table>
<thead>
<tr>
<th>4</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>
```

Optimality Condition

- \(\text{Opt}[j]\) is the maximum weight independent set of intervals \(I_1, I_2, \ldots, I_j\)
- \(\text{Opt}[j] = \max(\text{Opt}[j-1], w_j + \text{Opt}[p[j]])\)
 - Where \(p[j]\) is the index of the last interval which finishes before \(I_j\) starts

Algorithm

```
MaxValue(j) =
    if j = 0 return 0
    else
        return max( MaxValue(j-1), w_j + MaxValue(p[j]) )
```

Worst case run time: \(2^n\)

A better algorithm

```
M[ j ] initialized to -1 before the first recursive call for all j

MaxValue(j) =
    if j = 0 return 0;
    else if M[j] != -1 return M[j];
    else
        M[j] = max(MaxValue(j-1), w_j + MaxValue(p[j]));
        return M[j];
```
Iterative Algorithm

MaxValue(n)

\[
\text{int}[\] M = new int[n+1];
\]

\[
M[0] = 0;
\]

for (int i = 1; i <= n; i++)

\[
M[j] = \max(M[j-1], w_j + M[p[j]]);
\]

return M[n];

Fill in the array with the Opt values

\[
\text{Opt}[j] = \max (\text{Opt}[j – 1], w_j + \text{Opt}[p[j]])
\]

Computing the solution

\[
\text{Opt}[j] = \max (\text{Opt}[j – 1], w_j + \text{Opt}[p[j]])
\]

Algorithm Summary

- O(n^2) time algorithm for finding maximum weight independent set of intervals
- Key idea: Creating an Opt function to express optimal set of I_1, I_2, ..., I_k in terms of optimal set of I_1, I_2, ..., I_{k-1}
- Organize computation to avoid recomputation