CSE 417
Algorithms and Complexity

Winter 2023
Lecture 17
Divide and Conquer
Announcements

• Midterm stats (out of 60)
 – Mean: 43.2, Median: 46.25, Std Dev: 9.63

• Today and Wednesday: Divide and Conquer
• Friday: Armistice Day / Veterans Day (almost)
What you really need to know about recurrences

• Work per level changes geometrically with the level
• Geometrically increasing ($x > 1$)
 – The bottom level wins
• Geometrically decreasing ($x < 1$)
 – The top level wins
• Balanced ($x = 1$)
 – Equal contribution
Classify the following recurrences (Increasing, Decreasing, Balanced)

- \(T(n) = n + 5T(n/8) \)
- \(T(n) = n + 9T(n/8) \)
- \(T(n) = n^2 + 4T(n/2) \)
- \(T(n) = n^3 + 7T(n/2) \)
- \(T(n) = n^{1/2} + 3T(n/4) \)
Divide and Conquer

• Algorithm paradigm
 – Break problems into subproblems until easy to solve
 – Work is split between “divide”, “combine”, and “base” components

• Standard examples
 – MergeSort and QuickSort

• Analysis tool: Recurrences
Matrix Multiplication

- N X N Matrix, \(A \cdot B = C \)

```c
for (int i = 0; i < n; i++)
    for (int j = 0; j < n; j++) {
        int t = 0;
        for (int k = 0; k < n; k++)
            t = t + A[i][k] * B[k][j];
        C[i][j] = t;
    }
```
Recursive Matrix Multiplication

Multiply 2 x 2 Matrices:
\[
\begin{pmatrix}
 r & s \\
 t & u
\end{pmatrix}
= \begin{pmatrix}
 a & b \\
 c & d
\end{pmatrix}
\begin{pmatrix}
 e & g \\
 f & h
\end{pmatrix}
\]

- \(r = ae + bf \)
- \(s = ag + bh \)
- \(t = ce + df \)
- \(u = cg + dh \)

A N x N matrix can be viewed as a 2 x 2 matrix with entries that are \((N/2) \times (N/2)\) matrices.

The recursive matrix multiplication algorithm recursively multiplies the \((N/2) \times (N/2)\) matrices and combines them using the equations for multiplying 2 x 2 matrices.
Recursive Matrix Multiplication

• How many recursive calls are made at each level?

• How much work in combining the results?

• What is the recurrence?
What is the run time for the recursive Matrix Multiplication Algorithm?

• Recurrence:
Strassen’s Algorithm

Multiply 2 x 2 Matrices:
\[
\begin{array}{cc|cc}
| r & s | & | a & b | & | e & g | \\
| t & u | & | c & d | & | f & h |
\end{array}
\]

- \(r = p_1 + p_2 - p_4 + p_6 \)
- \(s = p_4 + p_5 \)
- \(t = p_6 + p_7 \)
- \(u = p_2 - p_3 + p_5 - p_7 \)

Where:
- \(p_1 = (b - d)(f + h) \)
- \(p_2 = (a + d)(e + h) \)
- \(p_3 = (a - c)(e + g) \)
- \(p_4 = (a + b)h \)
- \(p_5 = a(g - h) \)
- \(p_6 = d(f - e) \)
- \(p_7 = (c + d)e \)

From Aho, Hopcroft, Ullman 1974
Recurrence for Strassen’s Algorithms

- $T(n) = 7 \cdot T(n/2) + cn^2$
- What is the runtime?

$\log_2 7 = 2.8073549221$
Strassen’s Algorithms

• Treat $n \times n$ matrices as 2×2 matrices of $n/2 \times n/2$ submatrices
• Use Strassen’s trick to multiply 2×2 matrices with 7 multiplies
• Base case standard multiplication for single entries
• Recurrence: $T(n) = 7 \cdot T(n/2) + cn^2$
• Solution is $O(7^{\log n}) = O(n^{\log 7})$ which is about $O(n^{2.807})$
QuickSort(S):

1. Pick an element \(v \) in \(S \). This is the \textit{pivot} value.
2. Partition \(S - \{v\} \) into two disjoint subsets, \(S_1 \) and \(S_2 \) such that:
 - elements in \(S_1 \) are all \(< v\)
 - elements in \(S_2 \) are all \(> v\)
3. Return concatenation of QuickSort\((S_1)\), \(v \), QuickSort\((S_2)\)

Recursion ends if QuickSort() receives an array of length 0 or 1.
Computing the Median

• Given n numbers, find the number of rank n/2
• One approach is sorting
 – Sort the elements, and choose the middle one
 – Can you do better?

• Selection, given n numbers and an integer k, find the k-th largest
Select(A, k){
 Choose element x from A
 \[S_1 = \{y \in A \mid y < x\}\]
 \[S_2 = \{y \in A \mid y > x\}\]
 \[S_3 = \{y \in A \mid y = x\}\]
 if (\|S_2\| >= k)
 return Select(S_2, k)
 else if (\|S_2\| + \|S_3\| >= k)
 return x
 else
 return Select(S_1, k - \|S_2\| - \|S_3\|)
}
Deterministic Selection

- Random pivot gives an expected O(n) run time. The question of a deterministic algorithm was more challenging.
- What is the run time of select if we can guarantee that \textit{ChoosePivot} finds an x such that $|S_1| < 3n/4$ and $|S_2| < 3n/4$ in O(n) time?
BFPRT Algorithm

• A very clever choose algorithm . . .

• Deterministic algorithm that guarantees that $|S_1| < 3n/4$ and $|S_2| < 3n/4$

• Actual recurrence is:

$$T(n) \leq T(3n/4) + T(n/5) + cn$$
BFPRT Algorithm

\[|S_1| < 3n/4, \quad |S_2| < 3n/4 \]

Split into \(n/5 \) sets of size 5
M be the set of medians of these sets
x be the median of M
Construct \(S_1 \) and \(S_2 \) using pivot x
Recursive call in \(S_1 \) or \(S_2 \)
BFPRT Recurrence

- $T(n) \leq T(3n/4) + T(n/5) + c \cdot n$

Prove that $T(n) \leq 20 \cdot c \cdot n$