Announcements
Divide and Conquer

• Recurrences, Sections 5.1 and 5.2
• Algorithms
 – Median (Selection)
 – Fast Matrix Multiplication
 – Counting Inversions (5.3)
 – Multiplication (5.5)
Divide and Conquer : Merge Sort

Array Mergesort(Array a){
 n = a.Length;
 if (n <= 1)
 return a;
 b = Mergesort(a[0 .. n/2]);
 c = Mergesort(a[n/2+1 .. n-1]);
 return Merge(b, c);
}

Algorithm Analysis

- Cost of Merge
- Cost of Mergesort
\[T(n) = 2T(n/2) + cn; \quad T(1) = c; \]
Recurrence Analysis

• Solution methods
 – Unrolling recurrence
 – Guess and verify
 – Plugging in to a “Master Theorem”
Unrolling the recurrence
Substitution

Prove \(T(n) \leq n (\log_2 n + 1) \) for \(n \geq 1 \)

Induction:

Base Case:

Induction Hypothesis:
A better mergesort (?)

- Divide into 3 subarrays and recursively sort
- Apply 3-way merge

What is the recurrence?
Unroll recurrence for $T(n) = 3T(n/3) + n$
\[T(n) = aT(n/b) + f(n) \]
T(n) = T(n/2) + cn

Where does this recurrence arise?
Quicksort

QuickSort(S):
1. Pick an element v in S. This is the pivot value.
2. Partition $S\setminus\{v\}$ into two disjoint subsets, S_1 and S_2 such that:
 - elements in S_1 are all $< v$
 - elements in S_2 are all $> v$
3. Return concatenation of QuickSort(S_1), v, QuickSort(S_2)

Recursion ends if Quicksort() receives an array of length 0 or 1.
The steps of Quicksort

1. Select pivot value
2. Partition S
3. QuickSort(S₁) and QuickSort(S₂)
4. Presto! S is sorted
Picking the pivot

• Choose the first element in the subarray
• Choose a value that might be close to the middle
 – Median of three
• Choose a random element
Recurrence for Quicksort

\[QS(n) = \sum_{i=1}^{n} \frac{1}{n} \{ QS(i - 1) + QS(n - i) \} \]
Computing the Median

- Given n numbers, find the number of rank n/2
- One approach is sorting
 - Sort the elements, and choose the middle one
 - Can you do better?
Problem generalization

• *Selection*, given n numbers and an integer k, find the k-th largest
Select(A, k){
 Choose element x from A
 S_1 = \{y in A | y < x\}
 S_2 = \{y in A | y > x\}
 S_3 = \{y in A | y = x\}
 if (|S_2| >= k)
 return Select(S_2, k)
 else if (|S_2| + |S_3| >= k)
 return x
 else
 return Select(S_1, k - |S_2| - |S_3|)
}
Randomized Selection

• Choose the element at random
• Analysis can show that the algorithm has expected run time $O(n)$
T(n) = T(n/2) + cn

Where does this recurrence arise?
Solving the recurrence exactly
Total Work

\[
\log n \sum_{k=0}^{\log n} 2^k n = (2n - 1)n
\]

\[T(n) = 4T(n/2) + n\]
\[T(n) = 2T(n/2) + n^2 \]
$T(n) = 2T(n/2) + n^{1/2}$
Recurrences

• Three basic behaviors
 – Dominated by initial case
 – Dominated by base case
 – All cases equal – we care about the depth
What you really need to know about recurrences

- Work per level changes geometrically with the level
 - Geometrically increasing \((x > 1)\)
 - The bottom level wins
 - Geometrically decreasing \((x < 1)\)
 - The top level wins
 - Balanced \((x = 1)\)
 - Equal contribution
Classify the following recurrences (Increasing, Decreasing, Balanced)

- $T(n) = n + 5T(n/8)$
- $T(n) = n + 9T(n/8)$
- $T(n) = n^2 + 4T(n/2)$
- $T(n) = n^3 + 7T(n/2)$
- $T(n) = n^{1/2} + 3T(n/4)$