Minimum Spanning Tree

Greedy Algorithms for Minimum Spanning Tree
- Prim’s Algorithm: Extend a tree by including the cheapest out going edge
- Kruskal’s Algorithm: Add the cheapest edge that joins disjoint components
Why do the greedy algorithms work?

- For simplicity, assume all edge costs are distinct

Edge inclusion lemma

- Let \(S \) be a subset of \(V \), and suppose \(e = (u, v) \) is the minimum cost edge of \(E \), with \(u \) in \(S \) and \(v \) in \(V - S \)
- \(e \) is in every minimum spanning tree of \(G \)
 - Or equivalently, if \(e \) is not in \(T \), then \(T \) is not a minimum spanning tree

Proof

- Suppose \(T \) is a spanning tree that does not contain \(e \)
- Add \(e \) to \(T \), this creates a cycle
- The cycle must have some edge \(e_1 = (u_1, v_1) \) with \(u_1 \) in \(S \) and \(v_1 \) in \(V - S \)

\[T_1 = T - \{e_1\} + \{e\} \text{ is a spanning tree with lower cost} \]
- Hence, \(T \) is not a minimum spanning tree

Optimality Proofs

- Prim’s Algorithm computes a MST
- Kruskal’s Algorithm computes a MST

- Show that when an edge is added to the MST by Prim or Kruskal, the edge is the minimum cost edge between \(S \) and \(V - S \) for some set \(S \).

Prim’s Algorithm

\[
S = \{ \text{a} \}; \quad T = \{ \}; \\
\text{while } S \neq V \\
\quad \text{choose the minimum cost edge } \\
\quad e = (u, v), \text{ with } u \text{ in } S, \text{ and } v \text{ in } V - S \\
\quad \text{add } e \text{ to } T \\
\quad \text{add } v \text{ to } S
\]

Prove Prim’s algorithm computes an MST

- Show an edge \(e \) is in the MST when it is added to \(T \)
Kruskal’s Algorithm

Let \(C = \{\{v_1\}, \{v_2\}, \ldots, \{v_n\}\}; \ T = \{\} \)

while \(|C| > 1\)

Let \(e = (u, v) \) with \(u \) in \(C_i \) and \(v \) in \(C_j \) be the minimum cost edge joining distinct sets in \(C \)

Replace \(C_i \) and \(C_j \) by \(C_i \cup C_j \)

Add \(e \) to \(T \)

Prove Kruskal’s algorithm computes an MST

• Show an edge \(e \) is in the MST when it is added to \(T \)

MST Implementation and runtime

• Prim’s Algorithm
 – Implementation, runtime: just like Dijkstra’s algorithm
 – Use a heap, runtime \(O(m \log n) \)

• Kruskal’s Algorithm
 – Sorting edges by cost: \(O(m \log n) \)
 – Managing connected components uses the Union-Find data structure
 • Amazing, pointer based data structure
 • Very interesting mathematical result

Disjoint Set ADT

• Data: set of pairwise disjoint sets.

• Required operations
 – Union – merge two sets to create their union
 – Find – determine which set an item appears in

• Check \(\text{Find}(v) \neq \text{Find}(w) \) to determine if \((v,w)\) joins separate components

• Do \(\text{Union}(v,w) \) to merge sets

Up-Tree for DS Union/Find

Observation: we will only traverse these trees upward from any given node to find the root.

Idea: reverse the pointers (make them point up from child to parent). The result is an up-tree.

Initial state

```
1  2  3  4  5  6  7
```

Intermediate state

```
1  3  7
2  5  4
```

Roots are the names of each set.