CSE 417 Algorithms

Richard Anderson
Autumn 2023
Lecture 5

Announcements
• HW 1 Due tonight on Gradescope, turn in open until Sunday, 11:59 pm
• HW 2 Available
 – Includes problems from LeetCode

Worst Case Runtime Function
• Problem P: Given instance I compute a solution S
• A is an algorithm to solve P
• T(I) is the number of steps executed by A on instance I
• T(n) is the maximum of T(I) for all instances of size n

Ignore constant factors
• Constant factors are arbitrary
 – Depend on the implementation
 – Depend on the details of the model
• Determining the constant factors is tedious and provides little insight
• Express run time as $T(n) = O(f(n))$

Formalizing growth rates
• $T(n) = O(f(n))$ [$T : \mathbb{Z}^+ \rightarrow \mathbb{R}^+$]
 – If n is sufficiently large, $T(n)$ is bounded by a constant multiple of $f(n)$
 – Exist c, n_0, such that for $n > n_0$, $T(n) < c \cdot f(n)$
• $T(n) = \Omega(f(n))$
 – $T(n)$ is at least a constant multiple of $f(n)$
 – There exists an n_0, and $\epsilon > 0$ such that $T(n) > \epsilon \cdot f(n)$ for all $n > n_0$
• $T(n) = \Omega(f(n))$ if $T(n)$ is $O(f(n))$ and $T(n)$ is $\Omega(f(n))$

Efficient Algorithms
• Polynomial Time (P): Class of all problems that can be solved with algorithms that have polynomial runtime functions
• Polynomial Time has been a very successful tool for theoretical computer science
• Problems in Polynomial Time often have practical solutions
Graph Theory

- \(G = (V, E) \)
 - \(V \) – vertices
 - \(E \) – edges
- Undirected graphs
 - Edges sets of two vertices \(\{u, v\} \)
- Directed graphs
 - Edges ordered pairs \((u, v) \)
- Many other flavors
 - Edge / vertices weights
 - Parallel edges
 - Self loops

Definitions

- Path: \(v_1, v_2, \ldots, v_k \), with \((v_i, v_{i+1}) \) in \(E \)
 - Simple Path
 - Cycle
 - Simple Cycle
- Neighborhood
 - \(N(v) \)
- Distance
- Connectivity
 - Undirected
 - Directed (strong connectivity)
- Trees
 - Rooted
 - Unrooted

Graph Representation

\[
V = \{a, b, c, d\} \quad E = \{(a, b), (a, c), (a, d), (b, d)\}
\]

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Adjacency List

Incidence Matrix

Implementation Issues

- Graph with \(n \) vertices, \(m \) edges
- Operations
 - Lookup edge
 - Add edge
 - Enumeration edges
 - Initialize graph
- Space requirements

Graph search

- Find a path from \(s \) to \(t \)

```javascript
S = [s]
while S is not empty
  \( u = \text{Select}(S) \)
  visit \( u \)
  foreach \( v \) in \( N(u) \)
    if \( v \) is unvisited
      Add(S, \( v \))
      Pred[\( v \)] = \( u \)
    if \( (v = t) \) then path found

Breadth first search

- Explore vertices in layers
  - \( s \) in layer 1
  - Neighbors of \( s \) in layer 2
  - Neighbors of layer 2 in layer 3 . . .
Key observation

• All edges go between vertices on the same layer or adjacent layers

Bipartite Graphs

• A graph $V$ is bipartite if $V$ can be partitioned into $V_1$, $V_2$ such that all edges go between $V_1$ and $V_2$
• A graph is bipartite if it can be two colored

Can this graph be two colored?

Algorithm

• Run BFS
• Color odd layers red, even layers blue
• If no edges between the same layer, the graph is bipartite
• If edge between two vertices of the same layer, then there is an odd cycle, and the graph is not bipartite

Theorem: A graph is bipartite if and only if it has no odd cycles

Lemma 1

• If a graph contains an odd cycle, it is not bipartite
Lemma 2

• If a BFS tree has an *intra-level edge*, then the graph has an odd length cycle

*Intra-level edge*: both end points are in the same level