Announcements

• HW 1 Due tonight on Gradescope, turn in open until Sunday, 11:59 pm
• HW 2 Available
 – Includes problems from LeetCode
Worst Case Runtime Function

- Problem P: Given instance I compute a solution S
- A is an algorithm to solve P
- T(I) is the number of steps executed by A on instance I
- T(n) is the maximum of T(I) for all instances of size n
Ignore constant factors

• Constant factors are arbitrary
 – Depend on the implementation
 – Depend on the details of the model

• Determining the constant factors is tedious and provides little insight

• Express run time as $T(n) = O(f(n))$
Formalizing growth rates

- $T(n)$ is $O(f(n))$ [\(T: \mathbb{Z}^+ \rightarrow \mathbb{R}^+\)]
 - If n is sufficiently large, $T(n)$ is bounded by a constant multiple of $f(n)$
 - Exist c, n_0, such that for $n > n_0$, $T(n) < c \cdot f(n)$

- $T(n)$ is $\Omega(f(n))$
 - $T(n)$ is at least a constant multiple of $f(n)$
 - There exists an n_0, and $\varepsilon > 0$ such that $T(n) > \varepsilon \cdot f(n)$ for all $n > n_0$

- $T(n)$ is $\Theta(f(n))$ if $T(n)$ is $O(f(n))$ and $T(n)$ is $\Omega(f(n))$
Efficient Algorithms

• Polynomial Time (P): Class of all problems that can be solved with algorithms that have polynomial runtime functions
• Polynomial Time has been a very successful tool for theoretical computer science
• Problems in Polynomial Time often have practical solutions
Graph Theory

- $G = (V, E)$
 - V – vertices
 - E – edges

- Undirected graphs
 - Edges sets of two vertices $\{u, v\}$

- Directed graphs
 - Edges ordered pairs (u, v)

- Many other flavors
 - Edge / vertices weights
 - Parallel edges
 - Self loops
Definitions

• Path: v_1, v_2, \ldots, v_k, with (v_i, v_{i+1}) in E
 – Simple Path
 – Cycle
 – Simple Cycle

• Neighborhood
 – $N(v)$

• Distance

• Connectivity
 – Undirected
 – Directed (strong connectivity)

• Trees
 – Rooted
 – Unrooted
Graph Representation

V = \{ a, b, c, d \}

E = \{ \{a, b\}, \{a, c\}, \{a, d\}, \{b, d\} \}

Adjacency List

Incidence Matrix

\[
\begin{array}{cccc}
1 & 1 & 1 \\
1 & 0 & 1 \\
1 & 0 & 0 \\
1 & 1 & 0 \\
\end{array}
\]
Implementation Issues

• Graph with n vertices, m edges
• Operations
 – Lookup edge
 – Add edge
 – Enumeration edges
 – Initialize graph
• Space requirements
Graph search

- Find a path from s to t

\[S = \{s\} \]

while \(S \) is not empty

\[u = \text{Select}(S) \]

visit \(u \)

foreach \(v \) in \(N(u) \)

if \(v \) is unvisited

\[\text{Add}(S, v) \]
\[\text{Pred}[v] = u \]

if \((v = t) \) then path found
Breadth first search

- Explore vertices in layers
 - s in layer 1
 - Neighbors of s in layer 2
 - Neighbors of layer 2 in layer 3 . . .
Key observation

• All edges go between vertices on the same layer or adjacent layers
Bipartite Graphs

• A graph V is bipartite if V can be partitioned into V_1, V_2 such that all edges go between V_1 and V_2
• A graph is bipartite if it can be two colored
Can this graph be two colored?
Algorithm

• Run BFS
• Color odd layers red, even layers blue
• If no edges between the same layer, the graph is bipartite
• If edge between two vertices of the same layer, then there is an odd cycle, and the graph is not bipartite
Theorem: A graph is bipartite if and only if it has no odd cycles
Lemma 1

• If a graph contains an odd cycle, it is not bipartite
Lemma 2

- If a BFS tree has an *intra-level edge*, then the graph has an odd length cycle.

Intra-level edge: both end points are in the same level.