Problem 1 (10 points):
Let S be a set of intervals, where $S = \{I_1, \ldots, I_n\}$ with $I_j = (s_j, f_j)$ and $s_j < f_j$. A set of points $P = \{p_1, \ldots, p_k\}$ is said to be a cover for S if every interval of S includes at least one point of P, or more formally: for every I_i in S, there is a p_j in P with $s_i \leq p_j \leq f_i$.

Describe an algorithm that finds a cover for S that is as small as possible. Argue that your algorithm finds a minimum size cover. You algorithm should be efficient. In this case $O(n \log n)$ is achievable but it is okay if your algorithm is $O(n^2)$. You may assume that the intervals are sorted in order of finishing time.

Problem 2 (10 points):
The paragraphing problem is: Given a set of words w_1, \ldots, w_n with word lengths l_1, \ldots, l_n, break the words into consecutive groups, such that the sum of the lengths of the words in each group is less than a fixed value K. (We will ignore the issue of putting spaces between words or hyphenation; these are minor details.) The words remain in the original order, so the task is just to insert line breaks to ensure that each line is less than length K.

Describe a greedy algorithm for paragraphing that attempts pack in as many words as possible into each line, e.g., to put words into a line one at a time until the length bound K is reached, and break the line before the word w_r that caused the the bound to be exceeded.

Is your algorithm optimal, in the sense that it minimizes the total number of lines of output? Why or why not. If you think it is optimal, given an explanation of why (we will be looking for the general idea as opposed to a formal proof.) If it is not, give a counter example.

Problem 3 (10 points):
Here is another version of the homework scheduling problem with partial credit. Suppose that you have a collection of homework assignments $\{H_1, \ldots, H_k\}$. Assignment H_j has a time requirement t_j and a value p_j. If you spend less time on an assignment than required, you will get partial credit that it proportional to the time spent on it. So if you spend time t on assignment H_j, where $0 \leq t \leq t_j$ you will received $\frac{t}{t_j}p_j$ points.

You have total time T available for homework, and, unfortunately, $T < \sum_j t_j$. You want to maximize the points for the assignments that you either complete or get partial credit on, so you need to come up with an algorithm for allocating your time on the assignments.

Argue that there is an optimal solution where only one assignment gets partial credit.
Describe an algorithm that finds an optimal solution to the problem, which maximizes the number of points you receive on homework, subject to the constraint that the time spent is at most T. Give a justification as to why your algorithm finds an optimal solution. You should also give the run time for your algorithm.

Note: For this problem, it is critical that partial credit is allowed, as otherwise it is NP-Complete. More on that later in the course.

Programming Problem 4 (10 points):
1462. Course Schedule IV.

For problems from LeetCode, write a program that solves the given problem in one of the languages supported by LeetCode. Run the program in LeetCode and pass the tests. (Note that you can add your own test cases, which can be very helpful in debugging.) You should submit your source code, as well as submitting a screen shot that shows the solution has been accepted.

Programming Problem 5 (10 points):
1514. Path with Maximum Probability.

You are permitted to use a built in class for your priority queue. You do not need to implement a heap.

Question: How do you modify Dijkstra’s algorithm to solve this problem.