Dynamic Programming:

Interval Scheduling and Knapsack

6.I Weighted Interval Scheduling

Weighted Interval Scheduling

Weighted interval scheduling problem.

- Job j starts at s_{j}, finishes at f_{j}, and has weight or value v_{j}.
- Two jobs compatible if they don't overlap.
- Goal: find maximum weight subset of mutually compatible jobs.

Unweighted Interval Scheduling Review

Recall. Greedy algorithm works if all weights are I:

- Consider jobs in ascending order of finish time.
- Keep job if compatible with previously chosen jobs.

Observation. Greedy fails spectacularly with arbitrary weights.

Weighted Interval Scheduling

Notation. Label jobs by finishing time: $f_{1} \leq f_{2} \leq \ldots \leq f_{n}$. Def. $\mathrm{p}(\mathrm{j})=$ largest $\mathrm{i}<\mathrm{j}$ such that job i is compatible with j .

"p" suggesting (last possible) "predecessor"

$E x: p(8)=5, p(7)=3, p(2)=0$.

j	$p(\mathrm{j})$
0	-
1	0
2	0
3	0
4	1
5	0
6	2
7	3
8	5

Dynamic Programming: Binary Choice

Notation. OPT(j) = value of optimal solution to the problem consisting of job requests I, 2, ..., j.
key idea:

- Case I: Optimur selects job j.
- can't use incompatible jobs $\{p(j)+I, p(f)+2, \ldots, j-I\}$

$$
O P T(j)=\left\{\begin{array}{cl}
0 & \text { if } \mathrm{j}=0 \\
\max \left\{v_{j}+O P T(p(j)), O P T(j-1)\right\} & \text { otherwise }
\end{array}\right.
$$

Weighted Interval Scheduling: Brute Force Recursion

Brute force recursive algorithm.


```
Sort jobs by finish times so that f}\mp@subsup{f}{1}{}\leq\mp@subsup{f}{2}{}\leq\ldots,\mp@code{f
Compute p(1), p(2), ..., p(n)
Compute-Opt(j) {
    if (j = 0)
        return 0
    else
        return max(v}\mp@subsup{v}{j}{}+\mathrm{ Compute-Opt(p(j)), Compute-Opt(j-1))
}
```


Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm is correct, but spectacularly slow because of redundant sub-problems \Rightarrow exponential time.

Ex. Number of recursive calls for family of "layered" instances grows like Fibonacci sequence.

$$
p(I)=p(2)=0 ; p(j)=j-2, j \geq 3
$$

Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming. Unwind recursion.

```
Input: n, S S , .., S S , f
Sort jobs by finish times so that f}\mp@subsup{f}{1}{}\leq\mp@subsup{f}{2}{}\leq\ldots,\ldots\mp@subsup{f}{n}{}
Compute p(1), p(2), ..., p(n)
Iterative-Compute-Opt {
    OPT[0] = 0
    for j = 1 to n
        OPT[j] = max(vj + OPT[p(j)], OPT[j-1])
}
Output OPT[n]
```

Claim: OPT[j] is value of optimal solution for jobs I..j Timing: Loop is $\mathrm{O}(\mathrm{n})$; sort is $\mathrm{O}(\mathrm{n} \log \mathrm{n})$; what about $\mathrm{p}(\mathrm{j})$?

Weighted Interval Scheduling

Notation. Label jobs by finishing time: $f_{1} \leq f_{2} \leq \ldots \leq f_{n}$. Def. $\mathrm{p}(\mathrm{j})=$ largest $\mathrm{i}<\mathrm{j}$ such that job i is compatible with j .
$E x: p(8)=5, p(7)=3, p(2)=0$.

j	$v j$	pj	optj
0	-	-	0
1		0	
2		0	
3		0	
4		1	
5		0	
6		2	
7		3	
8		5	

Weighted Interval Scheduling Example

Label jobs by finishing time: $f_{1} \leq f_{2} \leq \ldots \leq f_{n}$. $p(\mathrm{j})=$ largest $\mathrm{i}<\mathrm{j}$ s.t. job i is compatible with j.

Exercise: try other concrete examples: If all vj=1: greedy by finish time $\rightarrow 1,4,8$ what if $\mathrm{v} 2>\mathrm{v} 1$?, but $<\mathrm{v} 1+\mathrm{v} 4$? $\mathrm{v} 2>\mathrm{v} 1+\mathrm{v} 4$, but $\mathrm{v} 2+\mathrm{v} 6<\mathrm{v} 1+\mathrm{v} 7$, say? etc.

j pj vj max $\left(\mathrm{v}_{\mathrm{j}}+\right.$ opt[p(j)], opt[j-1] $)=$ opt[j]				
0			\square	0
1	0		$\max (2+0,0)=$	
2	0		$\max (3+0,2)=$	3
3	0	1	$\max (1+0,3)=$	3
4	1	6	$\max (6+2,3)=$	8
5	0	9	$\max (9+0,8)=$	9
6	2	7	$\max (7+3,9)=$	
7	3	2	$\max (2+3,10)=$	
8	5	?	$\max (?+9,10)=$?

Exercise: What values of v8 cause it to be in/ex-cluded from opt?

Weighted Interval Scheduling: Finding a Solution

Q. Dynamic programming algorithms computes optimal value. What if we want the solution itself?
A. Do some post-processing - "traceback"

```
Run M-Compute-Opt(n)
Run Find-Solution(n)
Find-Solution(j) {
    if (j = 0)
        output nothing
    else if (vj}+\mathrm{ + OPT[p(j)] > OPT[j-1])
        print j
        Find-Solution(p(j))
    else
        Find-Solution(j-1)
}
```

the condition determining the max when computing OPT[]
the relevant
sub-problem

- \# of recursive calls $\leq n \Rightarrow \mathrm{O}(\mathrm{n})$.

Weighted Interval Scheduling Example

Label jobs by finishing time: $f_{1} \leq f_{2} \leq \ldots \leq f_{n}$. $\mathrm{p}(\mathrm{j})=$ largest $\mathrm{i}<\mathrm{j}$ s.t. job i is compatible with j .

Weighted Interval Scheduling Example

Label jobs by finishing time: $f_{1} \leq f_{2} \leq \ldots \leq f_{n}$. $\mathrm{p}(\mathrm{j})=$ largest $\mathrm{i}<\mathrm{j}$ s.t. job i is compatible with j .

Sidebar: why does job ordering matter?

It's Not for the same reason as in the greedy algorithm for unweighted interval scheduling.

Instead, it's because it allows us to consider only a small number of subproblems ($\mathrm{O}(\mathrm{n})$), vs the exponential number that seem to be needed if the jobs aren' t ordered (seemingly, any of the 2^{n} possible subsets might be relevant)

Don't believe me? Think about the analogous problem for weighted rectangles instead of intervals... (I.e., pick max weight non-overlapping subset of a set of axisparallel rectangles.) Same problem for squares or circles also appears difficult.

6.4 Knapsack Problem

Knapsack Problem

Knapsack problem.

- Given n objects and a "knapsack."
- Item i weighs $w_{i}>0$ kilograms and has value $v_{i}>0$.
- Knapsack has capacity of W kilograms.
- Goal: maximize total value without overfilling knapsack

Ex: $\{3,4\}$ has value 40 .

Item	Value	Weight	V/W
1	1	1	1
2	6	2	3
3	18	5	3.60
4	22	6	3.66
5	28	7	4

Greedy: repeatedly add item with maximum ratio v_{i} / w_{i}.
Ex: $\{5,2, I\}$ achieves only value $=35 \Rightarrow$ greedy not optimal.
[NB greedy is optimal for "fractional knapsack": take \#5 + 4/6 of \#4]

Dynamic Programming: False Start

Def. $\operatorname{OPT}(i)=\max$ profit subset of items I, \ldots, i.

- Case I: OPT ooes not seleg inem i. - OPT selects best of $\{1,2, \ldots, \mathrm{i}-\mathrm{T}\}$ binary choice
- Case 2: OPT selects item i.
-accepting item I does not immediately imply that we will have to reject other items
- without knowing what other items were selected before i, we don't even know if we have enough room for i

Conclusion. Need more sub-problems!

Dynamic Programming: Adding a New Variable

Def. $\operatorname{OPT}(\mathrm{i}, \mathrm{w})=\max$ profit subset of items I, \ldots, i with weight limit w.

- Case I: OPT does not select item i. -OPT selects best of $\{\mathrm{I}, 2, \ldots, \mathrm{i}-\mathrm{I}\}$ using weight limit w

Case 2: OPT selects item i.
$\xrightarrow{\text { oftimality }}$-new weight limit $=w-w_{i}$

- OPT selects best of $\{I, 2, \ldots, i-I\}$ using new weight limit

$$
O P T(i, w)= \begin{cases}0 & \text { if } \mathrm{i}=0 \\ O P T(i-1, w) & \text { if } \mathrm{w}_{\mathrm{i}}>\mathrm{w} \\ \max \left\{O P T(i-1, w), v_{i}+O P T\left(i-1, w-w_{i}\right)\right\} & \text { otherwise }\end{cases}
$$

Knapsack Problem: Bottom-Up

OPT(i, w) = max profit from subset of items I, ..., i with weight limit w.

```
Input: \(\mathrm{n}, \mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{n}}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}, \mathrm{W}\)
for \(w=0\) to \(W\)
    OPT[0, w] \(=0\)
for \(i=1\) to \(n\)
    for \(w=1\) to \(w\)
        if ( \(\left.w_{i}>w\right)\)
        OPT[i, w] = OPT[i-1, w]
        else
                OPT[i, w] \(=\max \left\{O P T[i-1, w], v_{i}+O P T\left[i-1, w-w_{i}\right]\right\}\)
return \(O P T[n, W]\)
```

(Correctness: prove it by induction on i \& w.)

Knapsack Algorithm

$$
\longrightarrow W+1
$$

OPT: $\{4,3\}$
value $=22+18=40$

```
if ( }\mp@subsup{w}{i}{\prime}>>w
```

if (}\mp@subsup{w}{i}{\prime}>>w
OPT[i,w] = OPT[i-1,w]
OPT[i,w] = OPT[i-1,w]
else
else
OPT[i, w] = max{OPT[i-1,w], vi

```
    OPT[i, w] = max{OPT[i-1,w], vi
```

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

Knapsack Problem: Running Time

Running time. $\Theta(\mathrm{nW})$.

- If W is "small' this is fine, but in worst case...
- Not polynomial in input size! ("W" takes only $\log _{2}$ W bits)
- Called "Pseudo-polynomial"
- Knapsack is NP-hard. [Chapter 8]

Knapsack approximation algorithm [Section II.8].
Good News: There exists a polynomial time algorithm that produces a feasible solution (i.e., satisfies weight-limit constraint) that has value within 0.01% (or any other desired factor ε) of optimum.
Bad News: as ε goes down, polynomial goes up.

