CSE 417: Algorithms and Computational Complexity

W. L. Ruzzo

Dynamic Programming, I: Fibonacci & Stamps

Dynamic Programming

Outline:

General Principles

Easy Examples – Fibonacci, Licking Stamps

Meatier examples

Weighted interval scheduling

String Alignment

RNA Structure prediction

Maybe others

Some Algorithm Design Techniques, I: Greedy

Greedy algorithms

Usually builds something a piece at a time

Repeatedly make the greedy choice - the one that looks the best right away

e.g. closest pair in TSP search, least frequent pair in Huffman

Usually simple, fast if they work (but often don't)

Some Algorithm Design Techniques, II: D & C

Divide & Conquer

Reduce problem to one or more sub-problems of the same type, i.e., a recursive solution

Typically, sub-problems are disjoint, and at most a constant fraction of the size of the original e.g. Mergesort, Quicksort, Binary Search, Karatsuba

Typically, speeds up a polynomial time algorithm

Some Algorithm Design Techniques, III: DP

Dynamic Programming

Reduce problem to one or more sub-problems of the same type, i.e., a recursive solution

Useful when the same sub-problems show up repeatedly in the solution

Often very robust to problem re-definition Sometimes gives exponential speedups

"Dynamic Programming"

Program – A plan or procedure for dealing with some matter

- Webster's New World Dictionary

A brief, usually printed, outline of the order to be followed, of the features to be presented, and the persons participating (as in a public performance)

merriam-webster.com

Dynamic Programming History

Richard Bellman. Pioneered the systematic study of dynamic programming in the 1950s.

Etymology.

Dynamic programming = planning over time.

Secretary of Defense was hostile to mathematical research.

Bellman sought an impressive name to avoid confrontation.

"it's impossible to use dynamic in a pejorative sense"

"something not even a Congressman could object to"

A very simple case: Computing Fibonacci Numbers

```
Recall F_n = F_{n-1} + F_{n-2} and F_0 = 0, F_1 = 1
0 | 1 | 2 | 3 | 5 | 8 | 13 | 21 | 34 | 55 | 89 | 144 | 233 | ...
```

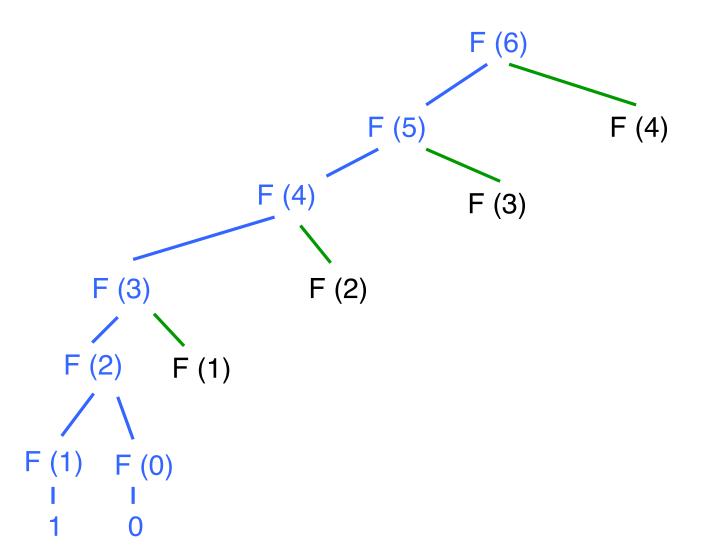
Recursive algorithm:

```
FiboR(n)
  if n = 0 then return(0)
  else if n = I then return(I)
  else return(FiboR(n-I)+FiboR(n-2))
```

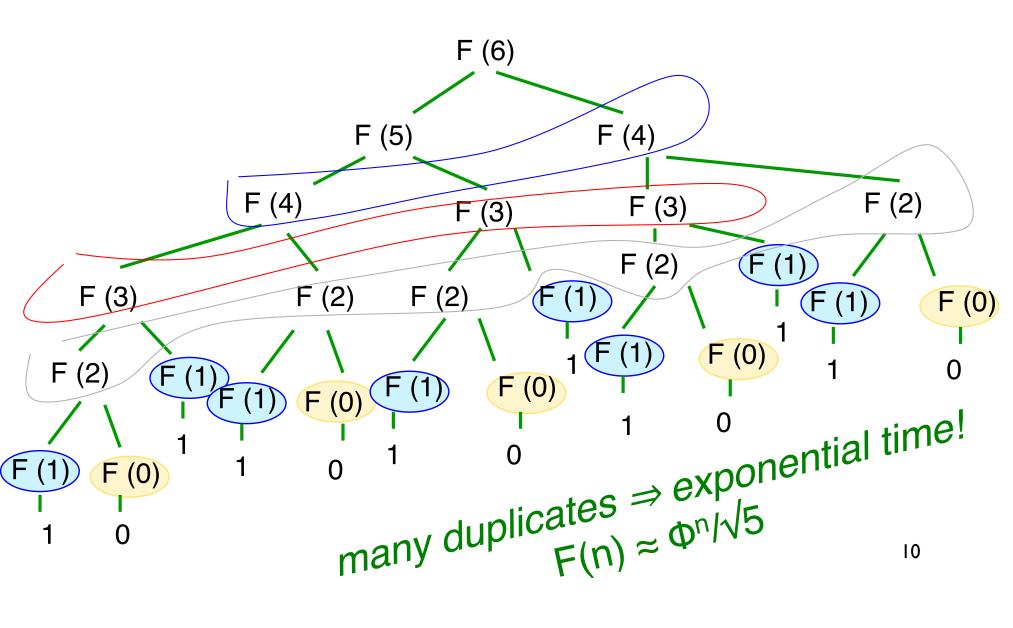
Note:

```
Exponential \uparrow: F_n \approx \Phi^n/\sqrt{5}, \Phi = (1 + \sqrt{5})/2 \approx 1.618...
```

Call tree - start



Full call tree



Two Alternative Fixes

Memoization ("Caching")

Compute on demand, but don't re-compute:

Save answers from all recursive calls

Before a call, test whether answer saved

Dynamic Programming (not memoized)

*Pre-*compute, don't re-compute:

Recursion becomes iteration (top-down → bottom-up)

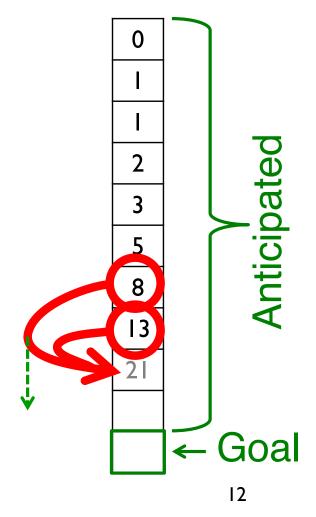
Anticipate and pre-compute needed values

DP usually cleaner, faster, simpler data structs

Fibonacci - Dynamic Programming Version

```
FiboDP(n):
F[0] \leftarrow 0
F[1] \leftarrow 1
for I = 2 to n do
F[i] \leftarrow F[i-1]+F[i-2]
end
return(F[n])
```

For this problem, suffices to keep only last 2 entries instead of full array, but about the same speed



Dynamic Programming

Useful when

Same recursive sub-problems occur repeatedly
Parameters of these recursive calls anticipated
The solution to whole problem can be solved
without knowing the internal details of how the
sub-problems are solved

"principle of optimality" - more below, e.g. slide 18

Example: Making change

Given:

Large supply of I_{ξ} , 5_{ξ} , 10_{ξ} , 25_{ξ} , 50_{ξ} coins An amount N

Problem: choose fewest coins totaling N

Cashier's (greedy) algorithm works:

Give as many as possible of the next biggest denomination

Licking Stamps

Given:

Large supply of 5¢, 4¢, and 1¢ stamps

An amount N

Problem: choose fewest stamps totaling N

A Few Ways To Lick 27¢

stamps	# of 4 ¢ stamps	# of l¢ stamps	total number	
5	0	2	7	<
4	I	3	8	
3	3	0	6	

Morals: Greed doesn't pay; success of "cashier's alg" depends on coin denominations

A Simple Algorithm

At most N stamps needed, etc.

Time: $O(N^3)$ (Not too hard to see some optimizations, but we're after bigger fish...)

Better Idea

Theorem: If last stamp in an opt sol has value v, then previous stamps are opt sol for N-v.

Proof: if not, we could improve the solution for N by using opt for N-v, plus v.

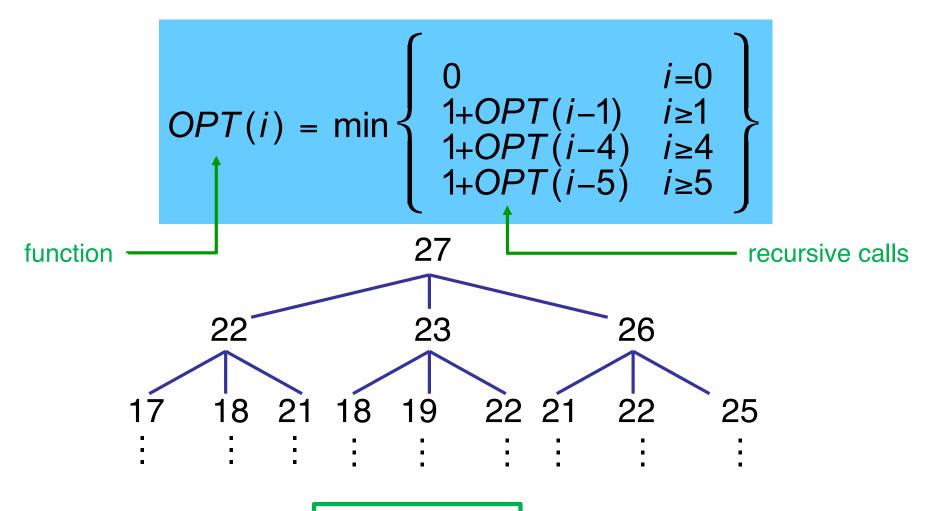
Alg: for i = 1 to n:

$$OPT(i) = \min \left\{ \begin{array}{ll} 0 & i=0 \\ 1+OPT(i-1) & i\geq 1 \\ 1+OPT(i-4) & i\geq 4 \\ 1+OPT(i-5) & i\geq 5 \end{array} \right\} \begin{array}{ll} \text{Claim: } OPT(i) = 0 \\ \text{min number of stamps totaling} \\ \text{stamps totaling} \\ \text{Pf: induction or } \\ \text{Pf: induction or } \\ \text{The problem of the problem of th$$

Claim: *OPT(i)* = stamps totaling i¢

Pf: induction on i.

New Idea: Recursion



Time: $> 3^{N/5}$

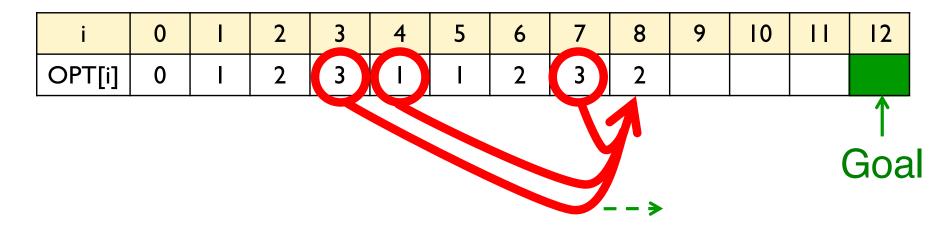
Another New Idea: Avoid Recomputation

Tabulate values of solved subproblems

for i = 0, ..., N do
$$OPT(i) = \min \left\{ \begin{array}{l} 0 & i=0 \\ 1+OPT(i-1) & i\geq 1 \\ 1+OPT(i-4) & i\geq 4 \\ 1+OPT(i-5) & i\geq 5 \end{array} \right\}$$
New Array Entry

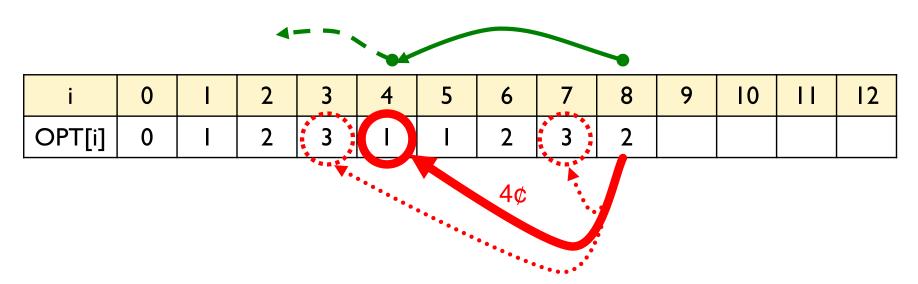
Time: O(N)

Finding How Many Stamps



1+Min(3,1,3)=2

Finding Which Stamps: Trace-Back



$$\underline{\mathbf{I}}$$
+Min(3, $\underline{\mathbf{I}}$,3) = $\underline{\mathbf{2}}$

$$OPT(i) = \min \left\{ \begin{array}{ll} 0 & i = 0 \\ 1 + OPT(i - 1) & i \ge 1 \\ 1 + OPT(i - 4) & i \ge 4 \\ 1 + OPT(i - 5) & i \ge 5 \end{array} \right\}$$

Trace-Back

Way I: tabulate all

add data structure storing back-pointers indicating which predecessor gave the min. (more space, maybe less time)

Way 2: just re-compute what's needed

Complexity Note

O(N) is better than $O(N^3)$; way better than $O(3^{N/5})$

But still exponential in input size (log N bits)

(E.g., miserable if N is 64 bits – $c \cdot 2^{64}$ steps & 2^{64} memory.)

Note: can do in O(1) for fixed denominations, e.g., 5ϕ , 4ϕ , and 1ϕ (how?) but not in general (i.e., when denominations and total are both part of the input). See "NP-Completeness" later.

Elements of Dynamic Programming

What feature did we use?

What should we look for to use again?

"Optimal Substructure"

Optimal solution contains optimal subproblems A non-example: min (number of stamps mod 2)

"Repeated Subproblems"

The same subproblems arise in various ways