CSE 417 Algorithms:
 Divide and Conquer

Larry Ruzzo

algorithm design paradigms: divide and conquer

Outline:

General Idea
Review of Merge Sort
Why does it work?
Importance of balance
Importance of super-linear growth
Some interesting applications
Inversions
Closest points
Integer Multiplication
Finding \& Solving Recurrences

algorithm design techniques

Divide \& Conquer

Reduce a problem to one or more (smaller) subproblems of the same type
Typically, each sub-problem is at most a constant fraction of the size of the original problem
Subproblems typically disjoint
Often gives significant, usually polynomial, speedup
Examples:
Binary Search, Mergesort, Quicksort (roughly),
Strassen's Algorithm, integer multiplication, powering, FFT, ...

Motivating Example:
 Mergesort

" $\mathrm{C}[\mathrm{i}]=$ smaller of $\mathrm{U}[\mathrm{a}], \mathrm{L}[\mathrm{b}]$ and correspondingly $\mathrm{a}++$ or $\mathrm{b}++$, while being careful about running past end of either";
Return C;
\}
Time: $\Theta(\mathrm{n} \log \mathrm{n})$

divide \& conquer - the key idea

Why does it work? Suppose we've already invented DumbSort, taking time n^{2}

Try Just One Level of divide \& conquer:
DumbSort(first $\mathrm{n} / 2$ elements)
$\mathrm{O}\left((\mathrm{n} / 2)^{2}\right)$
DumbSort(last $\mathrm{n} / 2$ elements)
Merge results
$\mathrm{O}\left((\mathrm{n} / 2)^{2}\right)$
$\mathrm{O}(\mathrm{n})$

Time: $2(\mathrm{n} / 2)^{2}+\mathrm{n}=\mathrm{n}^{2} / 2+\mathrm{n} \ll \mathrm{n}^{2}$
D\&C in a nutshell
Almost twice as fast!

Moral I: "two halves are better than a whole"
Two problems of half size are better than one full-size problem, even given $O(n)$ overhead of recombining, since the base algorithm has super-linear complexity.

Moral 2: "If a little's good, then more's better"
Two levels of D\&C would be almost 4 times faster, 3 levels almost 8 , etc., even though overhead is growing.
Best is usually full recursion down to some small constant size (balancing "work" vs "overhead").
In the limit: you've just rediscovered mergesort!

Moral 3: unbalanced division good, but less so:

$(. \ln)^{2}+(.9 n)^{2}+n=.82 n^{2}+n$
The 18% savings compounds significantly if you carry recursion to more levels, actually giving O (nlogn), but with a bigger constant. So worth doing if you can't get 50-50 split, but balanced is better if you can.
This is intuitively why Quicksort with random splitter is good badly unbalanced splits are rare, and not instantly fatal.

Moral 4: but consistent, completely

 unbalanced division doesn't help much:$$
(I)^{2}+(n-I)^{2}+n=n^{2}-n+2
$$

Little improvement here.

Mergesort: (recursively) sort 2 half-lists, then merge results.
$T(n)=2 T(n / 2)+c n, n \geq 2$
$T(I)=0$
Solution: $\Theta(\mathrm{n} \log \mathrm{n})$
(details later)

O(n)
work
per
level

A Divide \& Conquer Example: Closest Pair of Points

closest pair of points: non-geometric version

Given n points and arbitrary distances between them, find the closest pair. (E.g., think of distance as airfare

- definitely not Euclidean distance!)

Must look at all n choose 2 pairwise distances, else any one you didn't check might be the shortest.

Also true for Euclidean distance in I-2 dimensions?

closest pair of points: 1 dimensional version

Given n points on the real line, find the closest pair

Closest pair is adjacent in ordered list
Time $O(n \log n)$ to sort, if needed
Plus $O(n)$ to scan adjacent pairs
Key point: do not need to calc distances between all pairs: exploit geometry + ordering

closest pair of points: 2 dimensional version

Closest pair. Given n points in the plane, find a pair with smallest Euclidean distance between them.

Fundamental geometric primitive.
Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.
Special case of nearest neighbor, Euclidean MST, Voronoi.
fast closest pair inspired fast algorithms for these problems
Brute force: Check all pairs of points p and q with $\Theta\left(n^{2}\right)$ comparisons.
$I-D$ version. $O(n \log n)$ easy if points are on a line.

Can we do as well in 2-D?

Assumption. No two points have same x coordinate.

Divide. Sub-divide region into 4 quadrants.

Divide. Sub-divide region into 4 quadrants.
Obstacle. Impossible to ensure $n / 4$ points in each piece, so the "balanced subdivision" goal may be elusive/problematic.

closest pair of points

Algorithm.

Divide: draw vertical line L with $\approx n / 2$ points on each side.

Algorithm.

Divide: draw vertical line L with $\approx n / 2$ points on each side.
Conquer: find closest pair on each side, recursively.

Algorithm.

Divide: draw vertical line L with $\approx n / 2$ points on each side.
Conquer: find closest pair on each side, recursively.
Combine: find closest pair with one point in each side.
Return best of 3 solutions.

Find closest pair with one point in each side, assuming distance $<\delta$.

Find closest pair with one point in each side, assuming distance $<\delta$.

Observation: suffices to consider points within δ of line L.

Find closest pair with one point in each side, assuming distance $<\delta$.

Observation: suffices to consider points within δ of line L.
"Almost" the one-D problem again: Sort points in 2δ-strip by their y coordinate.

Find closest pair with one point in each side, assuming distance $<\delta$.

Observation: suffices to consider points within δ of line L.
"Almost" the one-D problem again: Sort points in 2δ-strip by their y coordinate. Only check pts within 8 in sorted list!

Def. Let s_{i} have the $i^{\text {th }}$ smallest y-coordinate among points in the 2δ-width-strip.
Claim. If $j-i \geq 8$, then the distance between s_{i} and s_{j} is $>\delta$.

Pf: No two points lie in the same $\delta / 2$-by- $\delta / 2$ square:

$$
\sqrt{\left(\frac{\delta}{2}\right)^{2}+\left(\frac{\delta}{2}\right)^{2}}=\frac{\sqrt{2}}{2} \delta \approx 0.7 \delta<\delta
$$

so ≤ 7 points within $+\delta$ of $y\left(s_{i}\right)$.

closest pair algorithm

```
Closest-Pair(p
    if(n <= ??) return ??
    Compute separation line L such that half the points
    are on one side and half on the other side.
    \delta
    \delta
    \delta}=\operatorname{min}(\mp@subsup{\delta}{1}{},\mp@subsup{\delta}{2}{}
    Delete all points further than \delta from separation line L
    Sort remaining points p[1]\ldotsp[m] by y-coordinate.
    for i = 1..m
        k = 1
        while i+k <= m && p[i+k].y<p[i].y + \delta
            \delta = min(\delta, distance between p[i] and p[i+k]);
            k++;
    return \delta.
}
```

Analysis, I: Let $D(n)$ be the number of pairwise distance calculations in the Closest-Pair Algorithm when run on $n \geq 1$ points

$$
D(n) \leq\left\{\begin{array}{cc}
0 & n=1 \\
2 D(n / 2)+7 n & n>1
\end{array}\right\} \Rightarrow D(n)=O(n \log n)
$$

BUT - that's only the number of distance calculations

What if we counted comparisons?

Analysis, II: Let $C(n)$ be the number of comparisons between coordinates/distances in the Closest-Pair Algorithm when run on $n \geq 1$ points

$$
\begin{aligned}
& C(n) \leq\left\{\begin{array}{cc}
0 & n=1 \\
2 C(n / 2)+k n \log n & n>1
\end{array}\right\} \Rightarrow C(n)=O\left(n \log ^{2} n\right) \\
& \text { for some constant } k
\end{aligned}
$$

Q. Can we achieve $O(n \log n)$ overall?
A. Yes. Don't sort points from scratch each time. Sort by x at top level only.
Recursive calls return δ and list, sorted by y, of points @ edges $\pm \delta$ Sort by merging two pre-sorted lists.

$$
T(n) \leq 2 T(n / 2)+O(n) \Rightarrow \mathrm{T}(n)=O(n \log n)
$$

Code is longer \& more complex

$\mathrm{O}(n \log n)$ vs $\mathrm{O}\left(n^{2}\right)$ may hide 10 x in constant?

How many points?

\boldsymbol{n}	Speedup: $\boldsymbol{n}^{\mathbf{2}} /\left(10 \boldsymbol{n} \log _{\mathbf{2}} \boldsymbol{n}\right)$
10	0.3
100	1.5
1,000	10
10,000	75
100,000	602
$1,000,000$	5,017
$10,000,000$	43,004

Going From Code to Recurrence

Carefully define what you're counting, and write it down!
"Let $C(n)$ be the number of comparisons between sort keys used by MergeSort when sorting a list of length $n \geq 1$ "
In code, clearly separate base case from recursive case, highlight recursive calls, and operations being counted.
Write Recurrence(s)

```
Base Case
MS(A: array'/..n]) returns array[I..n] {
    If(n=I) return A;
    New L:array[1:n/2] & MS(A[L_n/2]);
    New R:array[I:n/2] = MS(A[n/2+1..n]);
    Return(Merge(L,R));
    }
Merge(A,B: array[I..n]) {
    New C: array[I..2n];
    a=l; b=l;
    Fori=1 to 2n!
        C[i] = "smaller ol A[a], B[b] and a++ or b++";
    Return C;
    }
        Recursive
calls
```


Recursive calls
Total time: proportional to C(n)

One compare per element added to merged list, except the last.
(loops, copying data, parameter passing, etc.)

Carefully define what you're counting, and write it down!
"Let $D(n)$ be the number of pairwise distance calculations in the Closest-Pair Algorithm when run on $n \geq I$ points"
In code, clearly separate base case from recursive case, highlight recursive calls, and operations being counted.
Write Recurrence(s)

Basic operations:

```
if(n <= 1) return \infty
```


Base Case

Compute separation line L such that half the points are on one side and half on the other side.
$\delta_{1}=$ Closect-Dain(laft half)
$\delta_{2}=$ Closesi-faitifigit half)
$\delta=\operatorname{minfo}_{1}, \hat{N}_{2}$!
Delete all points further than δ from separation line L
Sort remaining points p [1]...p[m] by y-coordinate.
for $i=1 . . m$
$\mathrm{k}=1$
Basic operations at this recursive level
while $i+k<=m<\varepsilon \quad p[i+k] \cdot y<p[i] \cdot y+\delta$
$\delta=\min (\delta$ distance between $p[i]$ and $p[i+k]) ;$
k++;
return δ.

One recursive level

Analysis, I: Let $D(n)$ be the number of pairwise distance calculations in the Closest-Pair Algorithm when run on $n \geq 1$ points

$$
D(n) \leq\left\{\begin{array}{cc}
0 & n=1 \\
2 D(n / 2)+7 n & n>1
\end{array}\right\} \Rightarrow D(n)=O(n \log n)
$$

BUT - that's only the number of distance calculations

What if we counted comparisons?

Carefully define what you're counting, and write it down!
"Let $C(n)$ be the number of comparisons between coordinates/distances in the Closest-Pair Algorithm when run on $n \geq$ I points"
In code, clearly separate base case from recursive case, highlight recursive calls, and operations being counted.
Write Recurrence(s)

Analysis, II: Let $C(n)$ be the number of comparisons of coordinates/distances in the Closest-Pair Algorithm when run on $n \geq$ I points
$C(n) \leq\left\{\begin{array}{cc}0 & n=1 \\ 2 C(n / 2)+k_{4} n \log _{2} n & n>1\end{array}\right\} \Rightarrow C(n)=O\left(n \log ^{2} n\right)$
for $k_{4}=k_{1}+k_{2}+k_{3}+16$
Q. Can we achieve time $O(n \log n)$?
A. Yes. Don't sort points from scratch each time. Sort by x at top level only.
Recursive calls return δ and list, sorted by y, of points @ edges $\pm \delta$ Sort by merging two pre-sorted lists.

$$
T(n) \leq 2 T(n / 2)+O(n) \Rightarrow \mathrm{T}(n)=O(n \log n)
$$

Integer Multiplication

Add. Given two n-bit integers a and b, compute $a+b$.
$\mathrm{O}(n)$ bit operations.

Add. Given two n-bit integers a and b, compute $a+b$.

O(n) bit operations.

Multiply. Given two n-bit integers a and b,
compute $a \times b$.
The "grade school" method:

$\Theta\left(n^{2}\right)$ bit operations.

To multiply two 2-digit (decimal) integers:

Multiply four I-digit integers.
Add, shift some 2-digit integers to obtain result.

$$
\begin{aligned}
x & =10 \cdot x_{1}+x_{0} \\
y & =10 \cdot y_{1}+y_{0} \\
x y & =\left(10 \cdot x_{1}+x_{0}\right)\left(10 \cdot y_{1}+y_{0}\right) \\
& =100 \cdot x_{1} y_{1}+10 \cdot\left(x_{1} y_{0}+x_{0} y_{1}\right)+x_{0} y_{0}
\end{aligned}
$$

Same idea works for long integers can split them into 4 half-sized ints (" 10 " becomes " 10^{k} ", $k=$ length/2)

		$\begin{aligned} & 4 \\ & 3 \end{aligned}$	$\begin{aligned} & 5 \\ & 2 \end{aligned}$	$\begin{aligned} & y_{1} y_{0} \\ & x_{1} x_{0} \end{aligned}$
		1	0	$\mathrm{x}_{0} \cdot y_{0}$
	0	8		$x_{0} \cdot y_{1}$
	I	5		$x_{1} \cdot y_{0}$
1	2			$\mathrm{x}_{1} \cdot y_{1}$
I	4	4	0	

NB: $10^{\mathrm{k}} \cdot \mathrm{z}$ is a shift, not a (general) multiplication

To multiply two n-bit integers:

Multiply four $1 / 2 n$-bit integers.
Shift/add four n-bit integers to obtain result.

$$
\begin{aligned}
& x=2^{n / 2} \cdot x_{1}+x_{0} \\
& y=2^{n / 2} \cdot y_{1}+y_{0} \\
& x y=\left(2^{n / 2} \cdot x_{1}+x_{0}\right)\left(2^{n / 2} \cdot y_{1}+y_{0}\right) \\
& =2^{n} \cdot x_{1} y_{1}+2^{n / 2} \cdot\left(x_{1} y_{0}+x_{0} y_{1}\right)+x_{0} y_{0} \\
& \begin{array}{llllllllll}
1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & y_{1} & y_{0} \\
* & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & x_{1} \\
\hline
\end{array} \\
& \begin{array}{lllllllll}
1 & 0 & 1 & 0 & 1 & 0 & 0 & 1
\end{array} \quad \begin{array}{lllll}
x_{0} \cdot y_{1} \\
0 & 0 & 1 & 0 & 0
\end{array} 0 \\
& \mathrm{~T}(n)=\underbrace{4 T(n / 2)}_{\text {recursive calls }}+\underbrace{\Theta(n)}_{\text {add, shift }} \Rightarrow \mathrm{T}(n)=\Theta\left(n^{2}\right)
\end{aligned}
$$

assumes n is a power of 2

$$
\begin{aligned}
x & =2^{n / 2} \cdot x_{1}+x_{0} \\
y & =2^{n / 2} \cdot y_{1}+y_{0} \\
x y & =\left(2^{n / 2} \cdot x_{1}+x_{0}\right)\left(2^{n / 2} \cdot y_{1}+y_{0}\right) \\
& =2^{n} \cdot x_{1} y_{1}+2^{n / 2}\left(\left(x_{1} y_{0}+x_{0} y_{1}\right)+x_{0} y_{0}\right.
\end{aligned}
$$

Well, ok, 4 for 3 is more accurate...

$$
\begin{array}{ll}
\alpha & =x_{1}+x_{0} \\
\beta & =y_{1}+y_{0} \\
\alpha \beta & =\left(x_{1}+x_{0}\right)\left(y_{1}+y_{0}\right) \\
& =x_{1} y_{1}+\left(x_{1} y_{0}+x_{0} y_{1}\right)+x_{0} y_{0} \\
\left(x_{1} y_{0}+x_{0} y_{1}\right) & =\alpha \beta-x_{1} y_{1}-x_{0} y_{0}
\end{array}
$$

Karatsuba multiplication

To multiply two n-bit integers:
Add two pairs of $1 / 2 n$ bit integers.
Multiply three pairs of $1 / 2 n$-bit integers.
Add, subtract, and shift n-bit integers to obtain result.

$$
\begin{aligned}
x & =2^{n / 2} \cdot x_{1}+x_{0} \\
y & =2^{n / 2} \cdot y_{1}+y_{0} \\
x y & =2^{n} \cdot x_{1} y_{1}+2^{n / 2} \cdot\left(x_{1} y_{0}+x_{0} y_{1}\right)+x_{0} y_{0} \\
& =2^{n} \cdot x_{1} y_{1}+2^{n / 2} \cdot\left(\left(x_{1}+x_{0}\right)\left(y_{1}+y_{0}\right)-x_{1} y_{1}-x_{0} y_{0}\right)+x_{0} y_{0} \\
& \quad \mathrm{~A}
\end{aligned}
$$

Theorem. [Karatsuba-Ofman, 1962] Can multiply two n-digit integers in $\mathrm{O}\left(\mathrm{n}^{1.585}\right)$ bit operations.

$$
\begin{aligned}
& \mathrm{T}(n) \leq \underbrace{T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil)+T(1+\lceil n / 2\rceil)}_{\text {recursive calls }}+\underbrace{\Theta(n)}_{\text {add, subtract, shift }} \\
& \text { Sloppy version }: T(n) \leq 3 T(n / 2)+O(n) \\
& \Rightarrow \mathrm{T}(n)=O\left(n^{\log _{2} 3}\right)=O\left(n^{1.585}\right)
\end{aligned}
$$

Theorem. [Karatsuba-Ofman, 1962] Can multiply two n-digit integers in $\mathrm{O}\left(\mathrm{n}^{1.585}\right)$ bit operations.

$$
\mathrm{T}(n) \leq \underbrace{T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil)+T(1+\lceil n / 2\rceil)}_{\text {recursive calls }}+\underbrace{\Theta(n)}_{\text {add, subtract, shift }}
$$

Best to solve it directly (but messy). Instead, it nearly always suffices to solve a simpler recurrence:

$$
\text { Sloppy version: } T(n) \leq 3 T(n / 2)+O(n)
$$

Intuition: If $T(n)=n^{k}$, then $T(n+I)=n^{k}+k n^{k-1}+\ldots=O\left(n^{k}\right)$

$$
\Rightarrow \mathrm{T}(n)=O\left(n^{\log _{2} 3}\right)=O\left(n^{1.585}\right)
$$

(Proof later.)

Each digit of multiplier \& multiplicand flows into 2 of the lower subproblems (only " 4 " shown; green). Each sub-result flows back to 1 or 2 terms in parent (red).

multiplication - the bottom line

Naïve:
$\Theta\left(n^{2}\right)$
Karatsuba: $\quad \Theta\left(n^{1.59 \ldots}\right)$
Amusing exercise: generalize Karatsuba to do 5 size $n / 3$ subproblems $\rightarrow \Theta\left(n^{1.46 \ldots}\right)$
Best known: $\Theta(n \log n \log \log n)$
"Fast Fourier Transform"
but mostly unused in practice, unless you need really big numbers - a billion digits of π, say
High precision arithmetic IS important for crypto, among other uses

Recurrences

Above: Where they come from, how to find them

Next: how to solve them

Mergesort: (recursively) sort 2 half-lists, then merge results.
$T(n)=2 T(n / 2)+c n, \quad n \geq 2$
$T(\mathrm{I})=0$
Solution: $\Theta(n \log n)$
(detail later)

O(n)
work
per
level

now!

Solve:$\mathrm{T}(1)=\mathrm{c}$ $\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{cn}$

Solve: $\quad \mathrm{T}(1)=\mathrm{c}$

$$
\mathrm{T}(\mathrm{n})=4 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{cn}
$$

	Level	Num	Size	Work
	0	$1=4^{0}$	n	cn
	1	$4=4$	n/2	$4 \mathrm{cn} / 2$
	2	$16=4^{2}$	n/4	$16 \mathrm{cn} / 4$
	\ldots	\ldots
	i	$4{ }^{\text {i }}$	$\mathrm{n} / 2^{\text {i }}$	$4^{i} \mathrm{~cm} / 2^{\text {i }}$
	\ldots	\ldots
	k-I	4^{k-1}	$\mathrm{n} / 2^{\mathrm{k}-1}$	$4^{k-1} \mathrm{cn} / 2^{k-1}$
$\mathrm{n}=2^{\mathrm{k}} ; \mathrm{k}=\log _{2} \mathrm{n}$	k	$4^{\text {k }}$	$\mathrm{n} / 2^{\mathrm{k}}=1$	$4^{\mathrm{k}} \mathrm{T}$ (1)

Total Work: $\mathrm{T}(\mathrm{n})=\sum_{i=0}^{k} 4^{i} c n / 2^{i}=O\left(n^{2}\right) \quad \begin{aligned} & 4^{k}=\left(2^{2}\right)^{k}= \\ & \left(2^{k}\right)^{2}=n^{2}\end{aligned}$

Solve: $\quad \mathrm{T}(1)=\mathrm{c}$

$$
\mathrm{T}(\mathrm{n})=3 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{cn}
$$

Level Mum Size Work

0	1	$=3^{0}$	n
cn			
I	$3=3^{1}$	$\mathrm{n} / 2$	$3 \mathrm{cn} / 2$
2	$9=3^{2}$	$\mathrm{n} / 4$	$9 \mathrm{cn} / 4$

k-1	3^{k-1}	$n / 2^{k-1}$
k	3^{k}	$n / 2^{k}=1$

$$
\mathrm{n}=2^{\mathrm{k}} ; \mathrm{k}=\log _{2} \mathrm{n} \quad \mathrm{k} \quad 3^{\mathrm{k}} \quad \mathrm{n} / 2^{\mathrm{k}}=\mathrm{l} \quad 3^{\mathrm{k}} \mathrm{~T}(\mathrm{I})
$$

Total Work: $\mathrm{T}(\mathrm{n})=\sum_{i=0}^{k} 3^{i} \mathrm{cn} / 2_{\text {Details below }}^{i}=\mathrm{O}\left(n^{\log _{2} 3}\right)$

Theorem: for $x \neq I$,

$$
I+x+x^{2}+x^{3}+\ldots+x^{k}=\left(x^{k+I}-I\right) /(x-I)
$$

proof:

Corr.: for $0<x<1$, the sum is $<\mathrm{I} /(1-\mathrm{x})$

$$
\begin{aligned}
y & =1+x+x^{2}+x^{3}+\ldots+x^{k} \\
x y & =x+x^{2}+x^{3}+\ldots+x^{k}+x^{k+1} \\
x y-y & =x^{k+1}-1 \\
y(x-1) & =x^{k+1}-1 \\
y & =\left(x^{k+1}-1\right) /(x-1)
\end{aligned}
$$

Solve: $\quad \mathrm{T}(1)=\mathrm{c}$

$$
\mathrm{T}(\mathrm{n})=3 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{cn} \quad \text { (cont.) }
$$

$$
\begin{aligned}
T(n) & =\sum_{i=0}^{k} 3^{i} c n / 2^{i} \\
& =c n \sum_{i=0}^{k} 3^{i} / 2^{i} \\
& =c n \sum_{i=0}^{k}\left(\frac{3}{2}\right)^{i} \\
& =c n \frac{\left(\frac{3}{2}\right)^{k+1}-1}{\left(\frac{3}{2}\right)-1}
\end{aligned}
$$

$$
\begin{gathered}
\sum_{i=0}^{k} x^{i}= \\
\frac{x^{k+1}-1}{x-1} \\
(x \neq 1)
\end{gathered}
$$

Solve: $\quad \mathrm{T}(1)=\mathrm{c}$

$$
\mathrm{T}(\mathrm{n})=3 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{cn} \quad \text { (cont.) }
$$

$$
\begin{aligned}
\operatorname{cn} \frac{\left(\frac{3}{2}\right)^{k+1}-1}{\left(\frac{3}{2}\right)-1} & =2 \operatorname{cn}\left(\left(\frac{3}{2}\right)^{k+1}-1\right) \\
& <2 \operatorname{cn}\left(\frac{3}{2}\right)^{k+1} \\
& =3 \operatorname{cn}\left(\frac{3}{2}\right)^{k} \\
& =3 \operatorname{cn} \frac{3^{k}}{2^{k}}
\end{aligned}
$$

Solve: $\quad T(1)=c$

$$
\mathrm{T}(\mathrm{n})=3 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{cn} \quad \text { (cont.) }
$$

$$
\begin{array}{rlrl}
3 c n \frac{3^{k}}{2^{k}} & =3 c n \frac{3^{\log _{2} n}}{2^{\log 2 n}} & \\
& =3 c n \frac{3^{\log _{2} n}}{n} & & =\left(\mathrm{b}^{\log _{b} \mathrm{a}}\right)^{\log _{b} n} \\
& =3 c 3^{\log _{2} n} \\
& =3 c\left(n^{\log _{2} 3}\right) \\
& =O\left(n^{1.585 \ldots}\right) & & =\left(\mathrm{b}^{\log _{b} n}\right)^{\log _{b} a} \\
& =\mathrm{n}^{\log _{b} \mathrm{a}}
\end{array}
$$

divide and conquer - master recurrence

$$
\begin{aligned}
& T(n)=d \quad \text { for } n<b \text {, } \\
& T(n)=a T(n / b)+c n^{k} \text { for } n \geq b \text { then } \\
& c=0 \text { or } a>b^{k} \Rightarrow T(n)=\Theta\left(n^{\log _{b} a}\right) \quad \text { [many subprobs } \rightarrow \text { leaves dominate] } \\
& a<b^{k} \Rightarrow T(n)=\Theta\left(n^{k}\right) \\
& a=b^{k} \Rightarrow T(n)=\Theta\left(n^{k} \log n\right) \quad[\text { balanced } \rightarrow \text { all } \log n \text { levels contribute] }
\end{aligned}
$$

Fine print:

$$
a \geq I ; b>I ; c, d, k \geq 0 ; n=b^{t} \text { for some } t>0 ;
$$

a, b, k, t integers. True even if it is $\lceil n / b\rceil$ instead of n / b when t is not an integer.

Expand recurrence as in earlier examples, to get

$$
T(n)=n^{h}(d+c S)
$$

where $h=\log _{b}(a)\left(\right.$ and $n^{h}=$ number of tree leaves) and $S=\sum_{j=1}^{\log _{b} n} x^{j}$, where $x=b^{k} / a$.

If $\mathrm{c}=0$ the sum S is irrelevant, and $\mathrm{T}(\mathrm{n})=\mathrm{O}\left(\mathrm{n}^{\mathrm{h}}\right)$: all work happens in the base cases, of which there are n^{h}, one for each leaf in the recursion tree. If $c>0$, then the sum matters, and splits into 3 cases (like previous slide):

$$
\text { if } x<1 \text {, then } S<x /(1-x)=O(1) \text {. }
$$

[S is the first $\log \mathrm{n}$ terms of the infinite series with that sum.]
if $x=I$, then $S=\log _{b}(n)=O(\log n) . \quad[A l l$ terms in the sum are I and there are that many terms.]
if $x>I$, then $S=x \cdot\left(x^{\left.I+\log _{b}(n)-I\right) /(x-I) \text {. [And after some algebra, }}\right.$
$\mathrm{n}^{\mathrm{n}} * \mathrm{~S}=\mathrm{O}\left(\mathrm{n}^{\mathrm{k}}\right)$.]

Another D \& C Example:
 Exponentiation

Power(a,n)

Input: integer n and number a Output: a^{n}

Obvious algorithm
n-I multiplications
Observation:
if n is even, $n=2 m$, then $a^{n}=a^{m} \cdot a^{m}$

divide \& conquer algorithm

Power(a,n)
if $n=0$ then return(1)
if $n=I$ then return(a)
$x \leftarrow \operatorname{Power}(a,\lfloor n / 2\rfloor)$
$x \leftarrow x \bullet x$
if n is odd then
$x \leftarrow a \bullet x$
return (x)

Let $M(n)$ be number of multiplies
Worst-case
recurrence: $\quad M(n) \leq \begin{cases}M(\lfloor n / 2\rfloor)+2 & n>1\end{cases}$
By master theorem

$$
M(n)=O(\log n) \quad(a=l, b=2, c=2, d=k=0)
$$

More precise analysis:

$$
M(n)=\left\lfloor\log _{2} n\right\rfloor+\text { (\# of I's in n's binary representation) - I }
$$

Time is $O(M(n))$ if numbers < word size, else also depends on length, multiply algorithm

a practical application - RSA

Instead of a^{n} want $a^{n} \bmod N$

$a^{i+j} \bmod N=\left(\left(a^{i} \bmod N\right) \cdot\left(a^{j} \bmod N\right)\right) \bmod N$
same algorithm applies with each $x \bullet y$ replaced by
$((x \bmod N) \cdot(y \bmod N)) \bmod N$

In RSA cryptosystem (widely used for security, e.g. https://...)
need $a^{n} \bmod N$ where a, n, N each typically have 1024 bits
Power: at most 2048 multiplies of 1024 bit numbers
relatively easy for modern machines
Naive algorithm: $2^{1024} \approx 1.8 \times 10^{308}$ multiplies
For comparison, the age of the universe is $\approx 4.4 \times 10^{26}$ nanoseconds
l.e., @ I mult per ns, naive alg would take $10^{282} \times$ age of universe

Idea: Divide large problem into a few smaller problems of the same type \& join sub-results
"Two halves are better than a whole"
if the base algorithm has super-linear complexity, \& "join" is cheap
"If a little's good, then more's better"
repeat above, recursively
Utility:
Often faster; correctness often easy
Analysis: recursion tree, Master Recurrence, etc.
Applications: Many.
Binary Search, Merge Sort, (Quicksort), Closest Points, Integer Multiply, Exponentiation, FFT, ...

