
CSE 417
Algorithms:

Divide and Conquer

Larry Ruzzo

Thanks to Richard Anderson, Paul Beame, Kevin Wayne for some slides 1

2

algorithm design paradigms: divide and conquer

Outline:
General Idea
Review of Merge Sort

Why does it work?
Importance of balance

Importance of super-linear growth

Some interesting applications
Inversions
Closest points
Integer Multiplication

Finding & Solving Recurrences

3

algorithm design techniques

Divide & Conquer
Reduce a problem to one or more (smaller) sub-
problems of the same type
Typically, each sub-problem is at most a constant
fraction of the size of the original problem
Subproblems typically disjoint
Often gives significant, usually polynomial, speedup
Examples:

Binary Search, Mergesort, Quicksort (roughly),
Strassen’s Algorithm, integer multiplication, powering,
FFT, …

Motivating Example:
Mergesort

4

merge sort

MS(A: array[1..n]) returns array[1..n] {
If(n=1) return A;
New U:array[1:n/2] = MS(A[1..n/2]);
New L:array[1:n/2] = MS(A[n/2+1..n]);
Return(Merge(U,L));
}

Merge(U,L: array[1..n]) {
New C: array[1..2n];
a=1; b=1;
For i = 1 to 2n

“C[i] = smaller of U[a], L[b] and correspondingly a++ or b++,
while being careful about running past end of either”;

Return C;
}

5

A U C

L

split sort merge

Time: Θ(n log n)

D&C in a
nutshell

Why does it work? Suppose we’ve already
invented DumbSort, taking time n2

Try Just One Level of divide & conquer:

DumbSort(first n/2 elements) O((n/2)2)

DumbSort(last n/2 elements) O((n/2)2)

Merge results O(n)

Time: 2 (n/2)2 + n = n2/2 + n ≪ n2

Almost twice as fast!

6

divide & conquer – the key idea

7

d&c approach, cont.

Moral 1: “two halves are better than a whole”
Two problems of half size are better than one full-size
problem, even given O(n) overhead of recombining, since
the base algorithm has super-linear complexity.

Moral 2: “If a little's good, then more's better”
Two levels of D&C would be almost 4 times faster, 3 levels
almost 8, etc., even though overhead is growing.
Best is usually full recursion down to some small constant
size (balancing "work" vs "overhead").
In the limit: you’ve just rediscovered mergesort!

d&c approach, cont.

Moral 3: unbalanced division good, but less so:
(.1n)2 + (.9n)2 + n = .82n2 + n

The 18% savings compounds significantly if you carry recursion to
more levels, actually giving O(nlogn), but with a bigger constant.
So worth doing if you can’t get 50-50 split, but balanced is better
if you can.

This is intuitively why Quicksort with random splitter is good –
badly unbalanced splits are rare, and not instantly fatal.

Moral 4: but consistent, completely
unbalanced division doesn’t help much:

(1)2 + (n-1)2 + n = n2 - n + 2
Little improvement here.

8

9

mergesort (review)

Mergesort: (recursively) sort 2 half-lists, then
merge results.

T(n) = 2T(n/2)+cn, n³2

T(1) = 0
Solution: Q(n log n)

(details later) Lo
g

n
le

ve
ls O(n)

work
per
level

A Divide & Conquer Example:
Closest Pair of Points

10

closest pair of points: non-geometric version

Given n points and arbitrary distances between them,
find the closest pair. (E.g., think of distance as airfare
– definitely not Euclidean distance!)

Must look at all n choose 2 pairwise distances, else
any one you didn’t check might be the shortest.

Also true for Euclidean distance in 1-2 dimensions?

(… and all the rest of the (n) edges…)2

11

closest pair of points: 1 dimensional version

Given n points on the real line, find the closest pair

Closest pair is adjacent in ordered list
Time O(n log n) to sort, if needed
Plus O(n) to scan adjacent pairs
Key point: do not need to calc distances between all

pairs: exploit geometry + ordering

12

closest pair of points: 2 dimensional version
Closest pair. Given n points in the plane, find a pair with smallest
Euclidean distance between them.

Fundamental geometric primitive.
Graphics, computer vision, geographic information systems, molecular
modeling, air traffic control.
Special case of nearest neighbor, Euclidean MST, Voronoi.

Brute force: Check all pairs of points p and q with Q(n2) comparisons.

1-D version. O(n log n) easy if points are on a line.

Can we do as well in 2-D?

Assumption. No two points have same x coordinate.

Just to simplify presentation

fast closest pair inspired fast algorithms for these problems

13

closest pair of points. 2d, Euclidean distance: 1st try

Divide. Sub-divide region into 4 quadrants.

14

closest pair of points: 1st try

Divide. Sub-divide region into 4 quadrants.

Obstacle. Impossible to ensure n/4 points in
each piece, so the “balanced subdivision”
goal may be elusive/problematic.

15

closest pair of points

Algorithm.
Divide: draw vertical line L with ≈ n/2 points on each side.

16

L

closest pair of points

Algorithm.
Divide: draw vertical line L with ≈ n/2 points on each side.

Conquer: find closest pair on each side, recursively.

17

12

21

L

closest pair of points

Algorithm.
Divide: draw vertical line L with ≈ n/2 points on each side.

Conquer: find closest pair on each side, recursively.

Combine: find closest pair with one point in each side.
Return best of 3 solutions.

18

12

21
5

L

seems
like

Q(n2) ?

closest pair of points

Find closest pair with one point in each side,
assuming distance < d.

19

12

21

d = min(12, 21)

L

closest pair of points

Find closest pair with one point in each side,
assuming distance < d.

Observation: suffices to consider points within d of line L.

20

12

21

d

L

d = min(12, 21)

closest pair of points

Find closest pair with one point in each side,
assuming distance < d.

Observation: suffices to consider points within d of line L.
“Almost” the one-D problem again: Sort points in 2d-strip
by their y coordinate.

21

12

21

1

2

3

4
5

6

7

d

L

d = min(12, 21)

closest pair of points

Find closest pair with one point in each side,
assuming distance < d.

Observation: suffices to consider points within d of line L.
“Almost” the one-D problem again: Sort points in 2d-strip
by their y coordinate. Only check pts within 8 in sorted list!

22

12

21

1

2

3

4
5

6

7

d

L

d = min(12, 21)

closest pair of points

Def. Let si have the ith smallest
y-coordinate among points
in the 2d-width-strip.

Claim. If j – i ≥ 8, then the
distance between si and sj
is > d.

Pf: No two points lie in the
same d/2-by-d/2 square:

so ≤ 7 points within +d of y(si). 23

30

d

26

d

29

31

28

25

d/2

d/2

27

δ
2
"

#
$
%

&
'

2

+
δ
2
"

#
$
%

&
'

2

=
2
2
δ ≈ 0.7δ < δ

39 j

i

closest pair algorithm

24

Closest-Pair(p1, …, pn) {
if(n <= ??) return ??

Compute separation line L such that half the points
are on one side and half on the other side.

d1 = Closest-Pair(left half)
d2 = Closest-Pair(right half)
d = min(d1, d2)

Delete all points further than d from separation line L

Sort remaining points p[1]…p[m] by y-coordinate.

for i = 1..m
k = 1
while i+k <= m && p[i+k].y < p[i].y + d

d = min(d, distance between p[i] and p[i+k]);
k++;

return d.
}

closest pair of points: analysis

Analysis, I: Let D(n) be the number of pairwise distance
calculations in the Closest-Pair Algorithm when run on n ³ 1
points

BUT – that’s only the number of distance calculations

What if we counted comparisons?

25

€

D(n) ≤
0 n =1

2D n /2() + 7n n >1

$
%

&
'
(

⇒ D(n) = O(n logn)

closest pair of points: analysis

26

€

T(n) ≤ 2T n /2() + O(n) ⇒ T(n) = O(n logn)

C(n) ≤
0 n =1

2C n / 2() + kn logn n >1

"
#
$

%$

&
'
$

($
⇒ C(n) = O(n log2 n)

for some constant k

Analysis, II: Let C(n) be the number of comparisons between
coordinates/distances in the Closest-Pair Algorithm when run
on n ³ 1 points

Q. Can we achieve O(n log n) overall?

A. Yes. Don't sort points from scratch each time.
Sort by x at top level only.
Recursive calls return d and list, sorted by y, of points @ edges ± d
Sort by merging two pre-sorted lists.

Sort center strip

is it worth the effort?

Code is longer & more complex

O(n log n) vs O(n2) may hide 10x in constant?

How many points?

27

n
Speedup:

n2 / (10 n log2 n)
10 0.3

100 1.5

1,000 10

10,000 75

100,000 602

1,000,000 5,017

10,000,000 43,004

Going From Code to Recurrence

28

going from code to recurrence

Carefully define what you’re counting, and write it
down!

“Let C(n) be the number of comparisons between sort keys
used by MergeSort when sorting a list of length n ³ 1”

In code, clearly separate base case from recursive case,
highlight recursive calls, and operations being counted.
Write Recurrence(s)

29

merge sort

MS(A: array[1..n]) returns array[1..n] {
If(n=1) return A;
New L:array[1:n/2] = MS(A[1..n/2]);
New R:array[1:n/2] = MS(A[n/2+1..n]);
Return(Merge(L,R));
}

Merge(A,B: array[1..n]) {
New C: array[1..2n];
a=1; b=1;
For i = 1 to 2n {

C[i] = “smaller of A[a], B[b] and a++ or b++”;
Return C;
}

30

Recursive
calls

Base Case

One
Recursive
Level

Operations
being
counted

the recurrence

Total time: proportional to C(n)
(loops, copying data, parameter passing, etc.)

31

€

C(n) =
0 if n =1
2C(n /2) + (n −1) if n >1

$
%

One compare per
element added to
merged list, except
the last.

Base case

Recursive calls

going from code to recurrence

Carefully define what you’re counting, and write it
down!

“Let D(n) be the number of pairwise distance calculations
in the Closest-Pair Algorithm when run on n ³ 1 points”

In code, clearly separate base case from recursive case,
highlight recursive calls, and operations being counted.
Write Recurrence(s)

32

closest pair algorithm

33

Closest-Pair(p1, …, pn) {
if(n <= 1) return ¥

Compute separation line L such that half the points
are on one side and half on the other side.

d1 = Closest-Pair(left half)
d2 = Closest-Pair(right half)
d = min(d1, d2)

Delete all points further than d from separation line L

Sort remaining points p[1]…p[m] by y-coordinate.

for i = 1..m
k = 1
while i+k <= m && p[i+k].y < p[i].y + d

d = min(d, distance between p[i] and p[i+k]);
k++;

return d.
}

Recursive calls (2)

Basic operations at
this recursive level

Basic operations:
distance calcs

2D(n / 2)

7n

0Base Case

One
recursive

level

Analysis, I: Let D(n) be the number of pairwise distance
calculations in the Closest-Pair Algorithm when run on n ³ 1
points

BUT – that’s only the number of distance calculations

What if we counted comparisons?

closest pair of points: analysis

34

€

D(n) ≤
0 n =1

2D n /2() + 7n n >1

$
%

&
'
(

⇒ D(n) = O(n logn)

going from code to recurrence

Carefully define what you’re counting, and write it
down!

“Let C(n) be the number of comparisons between
coordinates/distances in the Closest-Pair Algorithm
when run on n ³ 1 points”

In code, clearly separate base case from recursive case,
highlight recursive calls, and operations being counted.
Write Recurrence(s)

35

closest pair algorithm

36

Closest-Pair(p1, …, pn) {
if(n <= 1) return ¥

Compute separation line L such that half the points
are on one side and half on the other side.

d1 = Closest-Pair(left half)
d2 = Closest-Pair(right half)
d = min(d1, d2)

Delete all points further than d from separation line L

Sort remaining points p[1]…p[m] by y-coordinate.

for i = 1..m
k = 1
while i+k <= m && p[i+k].y < p[i].y + d

d = min(d, distance between p[i] and p[i+k]);
k++;

return d.
}

2C(n / 2)

Recursive calls (2)

Basic operations:
comparisons

0

Base Case

One
recursive

level

k1n log n

Basic operations at
this recursive level

k2n

k3n log n

8n

7n

1

C(n) ≤
0 n =1

2C n / 2() + k4n log2 n n >1

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
⇒ C(n) = O(n log2 n)

for k4 = k1 + k2 + k3 +16

Analysis, II: Let C(n) be the number of comparisons of
coordinates/distances in the Closest-Pair Algorithm
when run on n ³ 1 points

Q. Can we achieve time O(n log n)?

A. Yes. Don't sort points from scratch each time.
Sort by x at top level only.
Recursive calls return d and list, sorted by y, of points @ edges ± d
Sort by merging two pre-sorted lists.

closest pair of points: analysis

37

€

T(n) ≤ 2T n /2() + O(n) ⇒ T(n) = O(n logn)

Whence k4 ?
T(n)<=2T(n/2)+(k1+k3)
<=2T(n/2)+(k1+k2+k3+16)

Integer Multiplication

38

integer arithmetic

Add. Given two n-bit
integers a and b,
compute a + b.

O(n) bit operations.

Multiply. Given two n-digit
integers a and b,
compute a × b.
The “grade school” method:

Q(n2) bit operations.

39

1

011 1

110 1+

010 1

111

010 1

011 1

100 0

10111

Add

1

1

0

0

1

1

1

0

0

1

1

1

1

0

0

1

1

1

1

0

1

0

1

0000000

1010101

1010101

1010101

1010101

1010101

100000000001011

1

0

1

1

1

1

1

0

*

Multiply

00000000

Carries

integer arithmetic

Add. Given two n-bit
integers a and b,
compute a + b.

O(n) bit operations.

Multiply. Given two n-bit
integers a and b,
compute a × b.
The “grade school” method:

Q(n2) bit operations.

40

1

011 1

110 1+

010 1

111

010 1

011 1

100 0

10111

Add

1

1

0

0

1

1

1

0

0

1

1

1

1

0

0

1

1

1

1

0

1

0

1

0000000

1010101

1010101

1010101

1010101

1010101

100000000001011

1

0

1

1

1

1

1

0

*

Multiply

00000000

Carries

divide & conquer multiplication: warmup

To multiply two 2-digit (decimal) integers:
Multiply four 1-digit integers.
Add, shift some 2-digit integers to obtain result.

41

€

x = 10⋅ x1 + x0
y = 10⋅ y1 + y0

xy = 10⋅ x1 + x0() 10⋅ y1 + y0()
= 100 ⋅ x1y1 + 10⋅ x1y0 + x0y1() + x0y0

5

2

4

3

0441

01

80

51

21

x0×y0

x0×y1

x1×y0

x1×y1

x1 x0

y1 y0

Same idea works for long integers –
can split them into 4 half-sized ints
(“10” becomes “10k”, k = length/2)

NB: 10k • z is a shift, not a (general) multiplication

divide & conquer multiplication: warmup

To multiply two n-bit integers:
Multiply four ½n-bit integers.
Shift/add four n-bit integers to obtain result.

42

€

T(n) = 4T n /2()
recursive calls
    

 + Θ(n)
add, shift
   ⇒ T(n) =Θ(n2)

€

x = 2n / 2 ⋅ x1 + x0

y = 2n / 2 ⋅ y1 + y0

xy = 2n / 2 ⋅ x1 + x0() 2n / 2 ⋅ y1 + y0()
= 2n ⋅ x1y1 + 2n / 2 ⋅ x1y0 + x0y1() + x0y0

assumes n is a power of 2

1

1

0

0

1

1

0

1

1

1

0

1

1

1

1

0

1000000000010110

*

10000010

10010101

11000100

11011010

x0×y0

x0×y1

x1×y0

x1×y1

x1 x0

y1 y0

key trick: 2 multiplies for the price of 1:

43

€

x = 2n / 2 ⋅ x1 + x0

y = 2n / 2 ⋅ y1 + y0

xy = 2n / 2 ⋅ x1 + x0() 2n / 2 ⋅ y1 + y0()
= 2n ⋅ x1y1 + 2n / 2 ⋅ x1y0 + x0y1() + x0y0

€

α = x1 + x0

β = y1 + y0

αβ = x1 + x0() y1 + y0()
= x1y1 + x1y0 + x0y1() + x0y0

x1y0 + x0y1() = αβ − x1y1 − x0y0

Well, ok, 4 for 3 is
more accurate…

Karatsuba multiplication

To multiply two n-bit integers:
Add two pairs of ½n bit integers.
Multiply three pairs of ½n-bit integers.
Add, subtract, and shift n-bit integers to obtain result.

Theorem. [Karatsuba-Ofman, 1962] Can multiply two n-digit
integers in O(n1.585) bit operations.

44

€

x = 2n / 2 ⋅ x1 + x0

y = 2n / 2 ⋅ y1 + y0

xy = 2n ⋅ x1y1 + 2n / 2 ⋅ x1y0 + x0 y1() + x0 y0

= 2n ⋅ x1y1 + 2n / 2 ⋅ (x1 + x0) (y1 + y0) − x1y1 − x0 y0() + x0 y0

€

T(n) ≤ T n /2# $() + T n /2% &() + T 1+ n /2% &()
recursive calls

                
+ Θ(n)

add, subtract, shift
    

Sloppy version : T(n) ≤ 3T(n /2) + O(n)

⇒ T(n) = O(n log 2 3) = O(n1.585)

A B CA C

€

T(n) ≤ T n /2# $() + T n /2% &() + T 1+ n /2% &()
recursive calls

                
+ Θ(n)

add, subtract, shift
    

Sloppy version : T(n) ≤ 3T(n /2) + O(n)

⇒ T(n) = O(n log 2 3) = O(n1.585)

€

T(n) ≤ T n /2# $() + T n /2% &() + T 1+ n /2% &()
recursive calls

                
+ Θ(n)

add, subtract, shift
    

Sloppy version : T(n) ≤ 3T(n /2) + O(n)

⇒ T(n) = O(n log 2 3) = O(n1.585)

€

T(n) ≤ T n /2# $() + T n /2% &() + T 1+ n /2% &()
recursive calls

                
+ Θ(n)

add, subtract, shift
    

Sloppy version : T(n) ≤ 3T(n /2) + O(n)

⇒ T(n) = O(n log 2 3) = O(n1.585)

Theorem. [Karatsuba-Ofman, 1962] Can multiply two n-digit
integers in O(n1.585) bit operations.

Best to solve it directly (but messy). Instead, it nearly always
suffices to solve a simpler recurrence:

Intuition: If T(n) = nk, then T(n+1) = nk+knk-1+… = O(nk)

(Proof later.)

Karatsuba multiplication

45

Karatsuba: A Decimal Example

12 • 34 =

3 • 102 + (-3 + 21 – 8)*101 + 8

= 408 .

1 • 3

= 3

(1+2) • (3+4)

= 21

2 • 4

= 8

Each digit of multiplier & multiplicand flows into 2 of the lower subproblems (only
“4” shown; green). Each sub-result flows back to 1 or 2 terms in parent (red).

multiplication – the bottom line

Naïve: Q(n2)
Karatsuba: Q(n1.59…)
Amusing exercise: generalize Karatsuba to do 5 size

n/3 subproblems → Q(n1.46…)
Best known: Q(n log n loglog n)

"Fast Fourier Transform"
but mostly unused in practice, unless you need really big
numbers - a billion digits of p, say

High precision arithmetic IS important for crypto,
among other uses

46

Recurrences

Above: Where they come
from, how to find them

Next: how to solve them

47

mergesort (review)

Mergesort: (recursively) sort 2 half-lists, then
merge results.

T(n) = 2T(n/2)+cn, n³2

T(1) = 0
Solution: Q(n log n)

(details later)

48

Lo
g

n
le

ve
ls O(n)

work
per
level

now!

Solve: T(1) = c
T(n) = 2 T(n/2) + cn

49

Level Num Size Work
0 1=20 n
cn
1 2=21 n/2 2 c n/2
2 4=22 n/4 4 c n/4
… … … …
i 2i n/2i 2i c n/2i

… … … …
k-1 2k-1 n/2k-1 2k-1 c n/2k-1

(add last col)

Level Num Size Work

0 1 = 20 n cn

1 2 = 21 n/2 2cn/2

2 4 = 22 n/4 4cn/4

… … … …

i 2i n/2i 2i c n/2i

… … … …

k-1 2k-1 n/2k-1 2k-1 c n/2k-1

k 2k n/2k = 1 2k T(1)n = 2k ; k = log2n

Total Work: T(n) = c n (1+log2n)

Careful: what’s
being counted?

Solve: T(1) = c
T(n) = 4 T(n/2) + cn

50

...

...

...

Level Num Size Work
0 1=40 n cn
1 4=41 n/2 4 c n/2
2 16=42 n/4 16 c n/4
… … … …
i 4i n/2i 4i c n/2i

… … … …
k-1 4k-1 n/2k-1 4k-1 c n/2k-1

k 4k n/2k=1 4k T(1)

€

4 i cn / 2i = O(n2
i=0

k∑)

Level Num Size Work

0 1 = 40 n cn

1 4 = 41 n/2 4cn/2

2 16 = 42 n/4 16cn/4

… … … …

i 4i n/2i 4i c n/2i

… … … …

k-1 4k-1 n/2k-1 4k-1 c n/2k-1

k 4k n/2k = 1 4k T(1)n = 2k ; k = log2n

Total Work: T(n) = 4k = (22)k=
(2k)2 = n2

Details below

Solve: T(1) = c
T(n) = 3 T(n/2) + cn

51

Level Num Size Work
0 1=30 n cn
1 3=31 n/2 3 c n/2
2 9=32 n/4 9 c n/4
… … … …
i 3i n/2i 3i c n/2i

… … … …
k-1 3k-1 n/2k-1 3k-1 c n/2k-1

k 3k n/2k=1 3k T(1)

...
...

...

n = 2k ; k = log2n

Total Work: T(n) = ∑ =
k
i

ii /cn0 23

Level Num Size Work

0 1 = 30 n cn

1 3 = 31 n/2 3cn/2

2 9 = 32 n/4 9cn/4

… … … …

i 3i n/2i 3i c n/2i

… … … …

k-1 3k-1 n/2k-1 3k-1 c n/2k-1

k 3k n/2k = 1 3k T(1)

= O
Details below

a useful identity

Theorem: for x ≠ 1,

1 + x + x2 + x3 + … + xk = (xk+1-1)/(x-1)

proof:

y = 1 + x + x2 + x3 + … + xk

xy = x + x2 + x3 + … + xk + xk+1

xy-y = xk+1 - 1
y(x-1)= xk+1 - 1

y = (xk+1-1)/(x-1)
52

Corr.: for 0 < x < 1,
the sum is < 1/(1-x)

Solve: T(1) = c
T(n) = 3 T(n/2) + cn (cont.)

53

= 3i cn / 2i
i=0

k
∑

= cn 3i / 2i
i=0

k
∑

= cn 3
2()

i

i=0

k
∑

= cn
3
2()

k+1
−1

3
2()−1

)n(T

Solve: T(1) = c
T(n) = 3 T(n/2) + cn (cont.)

54

cn
3
2()

k+1
−1

3
2()−1

= 2cn 3
2()

k+1
−1()

< 2cn 3
2()

k+1

= 3cn 3
2()

k

= 3cn 3
k

2k

Solve: T(1) = c
T(n) = 3 T(n/2) + cn (cont.)

55

alogbn

= blogb a()
logb n

= blogbn()
logb a

= nlogb a

3cn 3
k

2k
= 3cn 3

log2 n

2
log2 n

= 3cn 3
log2 n

n
= 3c3log2 n

= 3c n log2 3()
=O n1.585...()

divide and conquer – master recurrence
T(n) = d for n < b,

T(n) = aT(n/b)+cnk for n ≥ b then

c=0 or a>bk ⇒ T(n) = [many subprobs → leaves dominate]

a < bk ⇒ T(n) = Θ(nk) [few subprobs → top level dominates]

a = bk ⇒ T(n) = Θ (nk log n) [balanced → all log n levels contribute]

Fine print:
a ≥ 1; b > 1; c, d, k ≥ 0; n = bt for some t > 0;
a, b, k, t integers. True even if it is én/bù instead of n/b when
t is not an integer.

56

Θ(nlogb a)

master recurrence: proof sketch

Expand recurrence as in earlier examples, to get

T(n) = nh (d + c S)

where h = logb(a) (and nh = number of tree leaves) and ,
where x = bk/a.

If c = 0 the sum S is irrelevant, and T(n) = O(nh): all work happens in the

base cases, of which there are nh, one for each leaf in the recursion tree.

If c > 0, then the sum matters, and splits into 3 cases (like previous slide):
if x < 1, then S < x/(1-x) = O(1). [S is the first log n terms of the

infinite series with that sum.]

if x = 1, then S = logb(n) = O(log n). [All terms in the sum are 1 and
there are that many terms.]

if x > 1, then S = x • (x1+log
b
(n)-1)/(x-1). [And after some algebra,

nh * S = O(nk).]

57

S = x j
j=1

logbn∑

Another D & C Example:
Exponentiation

58

another d&c example: fast exponentiation

Power(a,n)
Input: integer n and number a
Output: an

Obvious algorithm
n-1 multiplications

Observation:
if n is even, n = 2m, then an = am• am

59

divide & conquer algorithm

Power(a,n)
if n = 0 then return(1)
if n = 1 then return(a)
x ¬ Power(a, ën/2û)
x ¬ x•x
if n is odd then

x ¬ a•x
return(x)

60

analysis

Let M(n) be number of multiplies

Worst-case
recurrence:

By master theorem

M(n) = O(log n) (a=1, b=2, c=2, d=k=0)

More precise analysis:

M(n) = ⎣log2n⎦ + (# of 1’s in n’s binary representation) - 1

Time is O(M(n)) if numbers < word size, else also
depends on length, multiply algorithm

61

M (n) =
0 n ≤1

M n / 2"# $%()+ 2 n >1

&
'
(

)(
≤

a practical application - RSA

Instead of an want an mod N
ai+j mod N = ((ai mod N) • (aj mod N)) mod N
same algorithm applies with each x • y replaced by

((x mod N) • (y mod N)) mod N

In RSA cryptosystem (widely used for security, e.g. https://...)
need an mod N where a, n, N each typically have 1024 bits
Power: at most 2048 multiplies of 1024 bit numbers

relatively easy for modern machines

Naive algorithm: 21024 ≈ 1.8 × 10308 multiplies
For comparison, the age of the universe is ≈ 4.4 × 1026 nanoseconds

I.e., @ 1 mult per ns, naive alg would take 10282 × age of universe

62

d & c summary

Idea: Divide large problem into a few smaller
problems of the same type & join sub-results

“Two halves are better than a whole”
if the base algorithm has super-linear complexity, & “join” is cheap

“If a little's good, then more's better”
repeat above, recursively

Utility:
Often faster; correctness often easy

Analysis: recursion tree, Master Recurrence, etc.
Applications: Many.

Binary Search, Merge Sort, (Quicksort), Closest Points,
Integer Multiply, Exponentiation, FFT, …

63

