
CSE 417:  Algorithms and 
Computational Complexity

Lecture 2: Analysis

Larry Ruzzo

1



outline

Algorithm “efficiency” will pervade the course; 
what is it, how do we quantify it?  “Big-O”!

Why big-O: measuring algorithm efficiency
What’s big-O: definition and related concepts
Reasoning with big-O: examples & applications

polynomials
exponentials
logarithms
sums

Polynomial Time

2



Why big-O: measuring algorithm efficiency

3



0 10 20 30 40 50

0
50

10
0

15
0

20
0

n

p_
n

n ln n
1.3 * n

 ln n

n →

p n
→

What is the nth prime number?

Let pn = nth prime, n >= 1, e.g.:
p1 = 2
p2 = 3

p3 = 5
p4 = 7

p5 = 11
P6 = 13

After much study, we know pn ~ n log n; even:

4

Great precision! But, often a simple, smooth, upper 

bound, is more convenient, e.g.:  pn = O(n log n)

https://en.wikipedia.org/wiki/Prime_number_theorem

https://en.wikipedia.org/wiki/Prime_number_theorem


“efficiency”

Our correct TSP algorithm was incredibly slow
No matter what computer you have

As a 2nd example, for large problems, mergesort
beats insertion sort – n log n vs n2 matters a lot

No matter what computer you have
Even tho m-sort is more complex & inner loop is slower

We want a general theory of “efficiency” that is
Simple
Objective

Relatively independent of changing technology
Measures algorithm, not code

But still predictive – “theoretically bad” algorithms should 
be bad in practice and vice versa (usually)

5

A
nd

 v
er

y 
co

m
pl

ex
 fn

s



computational complexity

The time complexity of an algorithm associates 
a number T(n), the worst-case time the 
algorithm takes, with each problem size n.

Mathematically,
T: N+ ® R
i.e.,T is a function mapping positive integers 
(problem sizes) to positive real numbers (number 
of steps).
“Reals” so, e.g., we can say sqrt(n) instead of ⎡sqrt(n)⎤
“Positive” so, e.g., log(n) and 2n/n aren’t problematic

6



computational complexity

Problem size 

T
im

e

T(n)

7



computational complexity: general goals

Asymptotic growth rate: i.e., characterize growth 
rate of worst-case run time as a function of problem 
size, up to a constant factor, e.g. T(n) = O(n2)

Why not try to be more precise?
Average-case, e.g., is hard to define, analyze, maybe misleading

Technological variations (computer, compiler, OS, …) 
easily 10x or more
Being more precise is much more work
A key question is “scale up”: if I can afford this today, how 
much longer will it take when my business is 2x larger?  
(E.g. today: cn2, next year: c(2n)2 = 4cn2 : 4 x longer.)  
Big-O analysis is adequate to address this.
NOT saying c=10 vs c=2 is irrelevant; it’s secondary.

8



What’s big-O: definition and related concepts

9



O-notation, and relatives.

Given two functions f and g: N+ ® R

f(n) is O(g(n)) iff there is a constant c > 0 so that 
f(n) is eventually always £ c g(n)

f(n) is W(g(n)) iff there is a constant c > 0 so that 
f(n) is eventually always ³ c g(n) 

f(n) is Q(g(n)) iff there is are constants c1, c2 > 0 so that 
eventually always c1g(n) £ f(n) £ c2g(n)

“Eventually always P(n)” means “P(n) is true” except perhaps for finitely 
many “small” values of n. Formally: “∃n0 s.t.∀n>n0 P(n) is true.” 

For out applications, f(n) is the (messy) actual time complexity of an 
algorithm, whereas g(n) is a simple approximation to it.

10

Upper
Bounds

Lower
Bounds

Both



computational complexity

Problem size 

T
im

e

T(n)

11



Example:  T(n) = Q(n log n)
since for all problem sizes n > n0, 
the worst case run time T(n) is 
between  n log2n  and  2 n log2n

computational complexity

Problem size 

T
im

e

T(n)

2n
 lo

g 2n

n 
log

2n

n0

(Irrelevant)

12



example

13

Initialization

Outer Loop

Inner Loop

n2
 + 30

n +
 50

00

0 50 100 150 200

0
10
00
0

20
00
0

30
00
0

40
00
0

50
00
0

n

Ti
m
e

A program with initialization and two nested loops 
initialize
for i in 1 .. n

for j in 1 .. n
do_something_simple(i,j)

might have runtime ≈ like this:



example

14

0 50 100 150 200

0
10
00
0

20
00
0

30
00
0

40
00
0

50
00
0

n

Ti
m
e

(Basically Irrelevant)

n2
 + 30

n +
 50

00

Initialization

Outer Loop

Inner Loop

1.5
 n

2

n2

If  T(n) = n2 + 30n + 5000, then T(n) = Q(n2), 
since for all n ≥ 135, we have n2 ≤ T(n) ≤1.5 n2

n0=135



Summary of Big-O

Source: Tim Roughgarden’s Algorithms book

30



Reasoning with big-O: examples & applications

polynomials

exponentials
logarithms

sums

15



0 2 4 6 8 10 12

0
20
0

40
0

60
0

80
0

10
00

12
00

14
00

examples

Show 10n2-16n+100 is O(n2) :
10n2-16n+100 £ 10n2 + 100 

= 10n2 + 102 

£ 10n2 + n2 = 11n2 for all n ³ 10 
∴ O(n2)  [ and also O(n3), O(n4), O(n2.5), … ]

16

11
n2

10
n2 -16

n+
10

0



0 2 4 6 8 10 12

0
20
0

40
0

60
0

80
0

10
00

12
00

14
00

examples

Show 10n2-16n+100 is W(n2) :
10n2-16n+100 ³ 10n2 - 16n

³ 10n2 - n2 = 9n2 for all n ³16 
∴ W(n2) [ and also W(n), W(n1.5), … ]
Therefore also 10n2-16n+100 is Q(n2)
[but not Q(n1.999) or Q(n2.001) ]

17

11
n2

10
n2 -16

n+
10

0

9n
2



asymptotic bounds for polynomials

Polynomials:  
p(n) = a0 + a1n + … + adnd is Q(nd) if ad > 0

Proof: 
p(n)  =  a0 +  a1 n  + … + adnd

≤ |a0|    + |a1| n  + … + adnd

≤ |a0|nd + |a1|nd + … + adnd (for n ≥ 1)
= c nd, where c = (|a0| + |a1| + … + |ad-1| + ad)

∴ p(n) = O(nd)
Exercise: show that p(n) = Ω(nd)

Hint: this direction is trickier; focus on the “worst case” 
where all coefficients except ad are negative.

18



another example of working with O-W-Q notation

Example:  For any a, and any b > 0,  (n+a)b is Q(nb)

(n+a)b £ (2n)b for n ³ |a|
= 2bnb

= cnb for c = 2b

so (n+a)b is O(nb)

(n+a)b ³ (n/2)b for n ³ 2|a| (even if a < 0)                              
= 2-bnb

= c’n for c’ = 2-b

so (n+a)b is W (nb)

19



more examples: tricks for sums

Example:  ∑1 ≤ i ≤ n i = Q(n2) 

Proof:
(a) An upper bound: each term is ≤ the max term

∑1 ≤ i ≤ n i ≤ ∑1 ≤ i ≤ n n = n2 = O(n2)
(b) A lower bound: each term is ≥ the min term

∑1 ≤ i ≤ n i ≥ ∑1 ≤ i ≤ n 1 = n = Ω(n)
This is valid, but a weak bound.  
Better: pick a large subset of large terms

∑1 ≤ i ≤ n i ≥ ∑n/2 ≤ i ≤ n n/2 ≥ ⎣n/2⎦2 = Ω(n2)

20

E.g. :  for i = 1..n {
for j=1 to i {
. . . 

}}



properties

Transitivity.
If f = O(g) and g = O(h) then f = O(h).
If f = W(g) and g = W(h) then f = W(h). 
If f = Q(g) and g = Q(h) then f = Q(h).

Additivity.
If f = O(h) and g = O(h) then f + g = O(h). 
If f = W(h) and g = W(h) then f + g = W(h).
If f = Q(h) and g = Q(h) then f + g = Q(h).

Proofs are left as exercises.

21

Use
fu

l, e
.g.

, fo
r 

an
aly

zin
g p

ro
gr

am
s 

with
 su

br
ou

tin
es

. 



polynomial vs exponential

For all r > 1 (no matter how small) 

and all d > 0, (no matter how large)

nd = O(rn)

n1001.01n

In short, every exponential 
grows faster than every 
polynomial!

(To prove this, use calculus
tricks like L’Hospital’s rule.)

22



Change-of-base formula:
loga(x) = logb(x)/logb(a)
log2(x) = log10(x)/log10(2)

= log10(x)/0.30103

logarithms

23

definition

“base”

Examples:
106 = 1,000,000, so log10 1000000 = 6
105 =    100,000, so log10 100000    = 5

i.e., log10(n) ≈ number of digits in n; also
log2(n) ≈ number of bits in n

Key properties:
log(x*y) = log(x) + log(y)
log(x/y) = log(x)  - log(y)
log(xy)   = y*log(x)



logarithms

Example:  For any a, b>1   logan is Q(logbn)

23€ 

loga b = x means ax = b

aloga b = b

(aloga b )logb n = blogb n = n
(loga b)(logb n) = loga n
c logb n = loga n for the constant c = loga b
So :
logb n =Θ(loga n) =Θ(logn)

definition

Corollary:  base of a log factor is usually irrelevant, 
asymptotically.  E.g.“O(n log n)”  [but nlog 8 ≠ O(nlog 8)]2                        8

} change-of-base formula



0 200 400 600 800 1000

0
5

10
15

20
25

30

n

n^.50

n^.33

log(n)

1 10 100 1000

0
5

10
15

20
25

30

n (log scale)

n^.50 n^.33

log(n)

polynomial vs logarithm

Logarithms:  
For all x > 0,  (no matter how small) log n = O(nx)

24

log grows slower than every polynomial



big-theta, etc. are not always “nice”

25

€ 

f (n) =
n2, n even
n, n odd

" 
# 
$ 

% 
& 
' 

f(n) ¹ Q(na) for any a.

Fortunately, such nasty 
cases are rare

n log n ¹ Q(na) for any a, either, but at least it’s simpler.



Polynomial Time

26



the complexity class P: polynomial time

P: The set of problems solvable by algorithms 
with running time O(nd) for some constant d 

(d is a constant independent of the input size n)

Nice scaling property: there is a constant c s.t.
doubling n, increases time only by a factor of c.

(E.g., c ~ 2d)

Contrast with exponential: For any constant c, there 
is a d such that n → n+d increases time by a factor of 
more than c. 

(E.g., c = 100 and d = 7 for 2n vs 2n+7)

27



polynomial vs exponential growth

22n

2n/10

1000n2

 

22n

2n/10

1000n2

28



why it matters

not only get very big, but do 
so abruptly, which likely yields 
erratic performance on small  
instances

29



another view of poly vs exp

Next year’s computer will be 2x faster.  If I can solve 
problem of size n0 today, how large a problem can I 
solve in the same time next year?

Complexity Size Increase E.g. T=1012

O(n) n0 → 2n0 1012 → 2  x 1012

O(n2) n0 → Ö2 n0 106             → 1.4  x 106

O(n3) n0 → 3Ö2 n0 104 → 1.25  x 104

2n /10 n0 → n0+10 400 → 410

2n n0 → n0 +1 40 → 41

30



why “polynomial”?

Point is not that n2000 is a nice time bound, or that 
the differences among n and 2n and n2 are negligible.

Rather, simple theoretical tools may not easily 
capture such differences, whereas exponentials are 
qualitatively different from polynomials, so more 
amenable to theoretical analysis.

“My problem is in P” is a starting point for a more detailed 
analysis

“My problem is not in P” may suggest that you need to 
shift to a more tractable variant, or otherwise readjust 
expectations

31



Summary

32



summary

A typical initial goal for algorithm analysis is to find a 
reasonably tight, i.e., Θ if possible
asymptotic, i.e., O or Θ
bound on usually upper bound
worst case running time 

as a function of problem size

This is rarely the last word, but often helps separate 
good algorithms from blatantly poor ones – so you 
can concentrate on the good ones!
As one important example, poly time algorithms are 
almost always preferable to exponential time ones.

33


