CSE 417: Algorithms and
Computational Complexity

Lecture |: Overview

Winter 2022

Larry Ruzzo

— .

Computer Science & Engineering

CSE 417, Wi '22: Algorithms & Computational Complexity
P CSE Home > About Us > Search [Contact Info

Administrative Lecture: (By Zoom, Week 1 at least), MWF 9:30-10:20

gﬁl?edul e & Reading Zoom: https://washington.zoom.us/j/94357067917 Requires login to Zoom with a UWNetID.

Course Email/BBoard

Subscription Options Office Hours Location Phone
Class List Archive Instructor: Larry Ruzzo, ruzzo@cs TBD Zoom
E-mail Course Staff .
TAs: Nathan Akkaraphab, akkanath@cs TBD
Lecture Notes Todor Dimitrov, todordécs TBD

1: Overview & Example

Lecture Recordings
Here

William Viet Nguyen, williamvéecs TBD
Lin Qiu, 1gq9€cs TBD

Luna Wang, zhengw28€cs TBD
Yifan Zhang, yifanz47€cs TBD A

Yilin Zhang, yi1inz24€cs TBD edu

N.

Course Email: cse417a_wi22@uw.edu. Staff ~- ° to , «outures, etc. The instructor and
TAs are subscribed to this list. Fr=-* h\“ ___.puon options. Messages are automatically
archived. W as

Discussi~- CS . _.vuss homework, etc.

r S es ® — ouuctures. Efficient algorithms for manipulating graphs and strings. Fast Fourier
u _ -aachines. Time and space complexity. NP-complete problems and undecidable problems.

rate Policy: TBD
Required Text: Algorithm Design by Jon Kleinberg and Eva Tardos. Addison Wesley, 2006. (Available from U Book Store, Amazon, etc.)
References: See Schedule & Reading.

Portions of the CSE 417 Web may be reprinted or adapted for academic nonprofit purposes, providing the source is accurately quoted and duly credited. The CSE 417 Web: © 1993-2022, the

2

What you'll have to do

|00% “Mastery Grading”:

Homework (~ 70 of grade) If you can solve it, you
get credit for
“mastering”’ the concept,
with a chance to

Programming
Several small projects

Written homework assignments resubmit/regrade some
English exposition and pseudo-code work each week.
Analysis and argument as well as design Details TBD

o o

Late Policy: TBD

Papers and/or electronic turnins are due at the stgui=e
class on the dUe date=02affigeorTe day late; 15% per
day thektos

Textbook

Algorithm Design by |on

Kleinberg and Eva
Tardos. Addison

Wesley, 2006.

- EVA TARDOS

http://www.aw-bc.com/info/kleinberg/
http://www.cs.cornell.edu/home/kleinber/
http://www.cs.cornell.edu/People/eva/eva.html

What the course is about

Design of Algorithms
design methods
common or important types of problems
analysis of algorithms - efficiency

correctness proofs

What the course is about

Complexity, NP-completeness and intractability

solving problems in principle is not enough

algorithms must be efficient
some problems have no efficient solution

NP-complete problems

important & useful class of problems whose solutions
(seemingly) cannot be found efficiently, but can be
checked easily

Very Rough Division of Time

Algorithms (7-8 weeks)

Analysis of Algorithms

Basic Algorithmic Design Techniques

Applications
Complexity & NP-completeness (2-3 weeks)
University of Washington

Computer Science & Engineering

Check online
schedule page for

| CSE 417, Wi '06: Approximate Schedule

Due Lecture Topic Reading

(evolving) details =

Holiday

Intro, Examples & Complexity Ch.1;Ch. 2

Intro, Examples & Complexity

Intro, Examples & Complexity 7

Graph Algorithms Ch. 3
Graph Algorithms

s
]
=
N
mE SN =

Complexity Example

Cryptography (e.g., RSA, SSL in browsers)
Secret: p,q prime, say 512 bits each
Public: n which equals p x q, 1024 bits
In principle
there is an algorithm that given n will find p and q:
try all 2°'2> [.3x10'>* possible p’s: kinda slow...
In practice
no fast algorithm known for this problem (on non-quantum computers)

security of RSA depends on this fact
(“quantum computing”: strongly driven by possibility of changing this)
8

Algorithms versus Machines

You may know about Moore’s Law and the
exponential improvements in hardware...

Ex: sparse linear equations over 25 years

|0 orders of magnitude improvement!

Algorithms or Hardware!

25 years
progress
solving sparse
linear

systems

hardware: ©
4 orders of §
magnitude

IO7E

10'4

G.E./ CDC 3600

CDC 6600

CDC 7600

Source: Sandia, via M. Schultz

10°

Cray 2

Cray 3 (Est.)

1960

1
1970

1
1980

1
1990

2000

Algorithms or Hardware!

25 years
progress

solving sparse

linear
systems

hardware: 4
orders of
magnitude

software: 6
orders of
magnitude

Seconds

IO7E

10'4

G.E./ CDC 3600

CDC 7600

Sparse G.E.

Gauss-Seidel

Source: Sandia, via M. Schultz

10°

G.E. = Gaussian Elimination
CDC 6600 SOR = Successive OverRelaxation
CG = Conjugate Gradient

Cray 3 (Est.)

CG

1960

1 v 1
1970 1980

1
1990

2000

Algorithms or Hardware!?

The
N-Body
Problem:

in 30 years
107 hardware
10!9 software

Log(Floats/[dynamical time] for 10 Million Particles)

20

15

10

-direct sum

-neighborhoods

treecode on cosmo

tree tuned for planetesimals--

tree with planetesimal adaptive integrator-

Source: T.Quinn

1 | | | ‘ | | | l | 1 |

1970 1980 1990 2000

15

10

Log(Flops)

Algorithms or Hardware!

SAT/SMT Solvers: 1000x improvement in a dozen years

® Solver-based programming languages
* Compiler optimizations using solvers
* Solver-based debuggers

® Solver-based type systems

® Solver-based concurrency bugfinding

| ,000,000 Constraints * Solver-based synthesis

® Bio & Optimization

* Concolic Testing
® Program Analysis
® Equivalence Checking

. * A Confi i
100,000 Constraints e

® Bounded MC
® Program Analysis

10,000 Constraints

1,000 Constraints €
1998 2000 2004 2007 2010

Data courtesy of Dr.Vijay Ganesh, U.Waterloo

Algorithm: definition

Procedure to accomplish a task or solve a
well-specified problem

Well-specified: know what all possible inputs
look like and what output looks like given them

“accomplish” via simple, well-defined steps
Ex: sorting names (via comparison)

Ex: checking for primality (via +, -, *, /, <)

Goals

Correctness
often subtle
Analysis
often subtle
Generality, Simplicity, ‘Elegance’
Efficiency

time, memory, network bandwidth, ...

Algorithms: a sample problem

Printed circuit-board company has a robot
arm that solders components to the board

Time: proportional to total distance the arm
must move from initial rest position around
the board and back to the initial position

For each board design, find best order to do
the soldering

Printed Circuit Board

Printed Circuit Board

A Well-defined Problem

Input: Given a set S of n points in the plane

Output: The shortest cycle tour that visits
each point in the set S once.

Better known as “TSP”

How might you solve it?

NeareSt heuristic: A rule of thumb,
o simplification, or educated
Nelghbor guess that reduces or limits

Heu riStiC the search for solutions in

domains that are difficult and
poorly understood. May be
Start at some point py good, but not proven to give
Walk first to its the best or fastest solution.

nearest neighbor p,

Repeatedly walk to the nearest unvisited neighbor
P,, then ps,... until all points have been visited

Then walk back to p,

Nearest Neighbor Heuristic

P1
Po _.-@&.--—-: e
| RN
/ ‘
/ /
o
Pe ./
.. ‘/‘

20

An input where NN works badly

Iength ~ 84 ’

16 4

An input where NN works badly

optimal soln for this example
length = 63.8 (vs ~84 above)

Pr—— il () el —
16 4 1.9 2 8

22
Po

Revised idea - Closest pairs first

Repeatedly join the closest pair of points '7'

(s.t. result can still be part of a
single loop in the end. l.e,, join ? <

endpoints, but not points in middle, |
of path segments already created.)

How does this work on our bad example!?

16 4 1.9 2 8

23
Po

A bad example for “close pairs”

24

A bad example for “close pairs”

1.5 1.5

VS

25

Something that works

“Brute Force Search”:

For each of the n! = n(n-1)(n-2)...| orderings of the
points, check the length of the cycle you get

Keep the best one

(Easy to see that it’s correct, but slow!)

26

Two Notes

The two incorrect algorithms were “greedy”
Often very natural & tempting ideas

They make choices that look great “locally” (and never
reconsider them)

When greed works, the algorithms are typically efficient

BUT: often does not work - you get boxed in

Our correct alg avoids this, but is incredibly slow

20! is so large that checking one billion orderings per
second would take 2.4 billion seconds (around 70 years!)

And growing: n! ~ N21Tn - (n/e)n ~ 20(nlogn)

27

The Morals of the Story

Algorithms are important

Many software gains outstrip hardware gains (Moore’s law)
Simple problems can be hard
Factoring, TSP
Simple ideas don’t always work

Nearest neighbor, closest pair heuristics

Simple algorithms can be very slow
Brute-force factoring, TSP
For some problems, even the best algorithms are slow

Course Goals:
formalize these ideas, and
develop more sophisticated approaches

28

OUR FIELD HAS BEEN
STRUGGLING WITH THIS
PROBLEM FOR YEARS.

71

STRUGGLE NO MORE!
I'™M HERE TO SOLVE
IT JITH ALGORITHITS!

1 5IX MONTHS LATER:

WO, THIS PROBLEM
15 REF\LLY HARD,

)OUWSHY

i

https://xkcd.com/

https://xkcd.com/

