
CSE 417: Algorithms and
Computational Complexity

Lecture I: Overview

Winter 2022
Larry Ruzzo

1

2

http://courses.cs.washington.edu/417

What you’ll have to do

Homework (~55% of grade)
Programming

Several small projects

Written homework assignments
English exposition and pseudo-code
Analysis and argument as well as design

Midterm / Final Exam (~15% / 30%)
Late Policy:

Papers and/or electronic turnins are due at the start of
class on the due date. 10% off for one day late; 15% per
day thereafter.

3

100% “Mastery Grading”:
If you can solve it, you
get credit for
“mastering” the concept,
with a chance to
resubmit/regrade some
work each week.
Details TBD

TBD

4

Textbook

Algorithm Design by Jon
Kleinberg and Eva
Tardos. Addison
Wesley, 2006.

http://www.aw-bc.com/info/kleinberg/
http://www.cs.cornell.edu/home/kleinber/
http://www.cs.cornell.edu/People/eva/eva.html

5

What the course is about

Design of Algorithms
design methods
common or important types of problems
analysis of algorithms - efficiency
correctness proofs

6

What the course is about
Complexity, NP-completeness and intractability

solving problems in principle is not enough
algorithms must be efficient

some problems have no efficient solution

NP-complete problems
important & useful class of problems whose solutions
(seemingly) cannot be found efficiently, but can be
checked easily

Very Rough Division of Time

Algorithms (7-8 weeks)
Analysis of Algorithms
Basic Algorithmic Design Techniques
Applications

Complexity & NP-completeness (2-3 weeks)

Check online
schedule page for
(evolving) details

7

8

Complexity Example

Cryptography (e.g., RSA, SSL in browsers)

Secret: p,q prime, say 512 bits each
Public: n which equals p x q, 1024 bits

In principle
there is an algorithm that given n will find p and q:
try all 2512 > 1.3x10154 possible p’s: kinda slow…

In practice

no fast algorithm known for this problem (on non-quantum computers)

security of RSA depends on this fact
(“quantum computing”: strongly driven by possibility of changing this)

9

Algorithms versus Machines

You may know about Moore’s Law and the
exponential improvements in hardware...

Ex: sparse linear equations over 25 years

10 orders of magnitude improvement!

10

107

106

105

104

103

102

101

100

Se
co

nd
s

G.E. / CDC 3600

CDC 6600

CDC 7600

Cray 1

Cray 2

Cray 3 (Est.)

1960 1970 1980 1990 2000

Source: Sandia, via M. Schultz

Algorithms or Hardware?
25 years
progress
solving sparse
linear
systems

hardware:
4 orders of
magnitude

11

107

106

105

104

103

102

101

100

Se
co

nd
s

G.E. / CDC 3600

CDC 6600

CDC 7600

Cray 1

Cray 2

Cray 3 (Est.)

Sparse G.E.

Gauss-Seidel

SOR
CG

1960 1970 1980 1990 2000

Source: Sandia, via M. Schultz

Algorithms or Hardware?
25 years
progress
solving sparse
linear
systems

hardware: 4
orders of
magnitude

software: 6
orders of
magnitude

G.E. = Gaussian Elimination
SOR = Successive OverRelaxation
CG = Conjugate Gradient

12

Source: T.Quinn

Algorithms or Hardware?

The
N-Body
Problem:

in 30 years
107 hardware
1010 software

• Solver-based programming languages
• Compiler optimizations using solvers
• Solver-based debuggers
• Solver-based type systems
• Solver-based concurrency bugfinding
• Solver-based synthesis
• Bio & Optimization

• Bounded MC
• Program Analysis
• AI

• Concolic Testing
• Program Analysis
• Equivalence Checking
• Auto Configuration

Algorithms or Hardware?
SAT/SMT Solvers: 1000x improvement in a dozen years

Data courtesy of Dr. Vijay Ganesh, U. Waterloo

Algorithm: definition

Procedure to accomplish a task or solve a
well-specified problem

Well-specified: know what all possible inputs
look like and what output looks like given them

“accomplish” via simple, well-defined steps

Ex: sorting names (via comparison)

Ex: checking for primality (via +, -, *, /, £)

13

Goals

Correctness
often subtle

Analysis
often subtle

Generality, Simplicity, ‘Elegance’

Efficiency
time, memory, network bandwidth, …

14

15

Algorithms: a sample problem

Printed circuit-board company has a robot
arm that solders components to the board

Time: proportional to total distance the arm
must move from initial rest position around
the board and back to the initial position

For each board design, find best order to do
the soldering

16

Printed Circuit Board

17

Printed Circuit Board

18

A Well-defined Problem

Input: Given a set S of n points in the plane
Output: The shortest cycle tour that visits
each point in the set S once.

Better known as “TSP”

How might you solve it?

19

Nearest
Neighbor
Heuristic

Start at some point p0
Walk first to its
nearest neighbor p1
Repeatedly walk to the nearest unvisited neighbor
p2, then p3,… until all points have been visited
Then walk back to p0

heuristic: A rule of thumb,
simplification, or educated
guess that reduces or limits
the search for solutions in
domains that are difficult and
poorly understood. May be
good, but not proven to give
the best or fastest solution.

20

Nearest Neighbor Heuristic

p0
p1

p6

21

An input where NN works badly

p0

.91 24 816

length ~ 84

22

An input where NN works badly

p0

.91 24 816

optimal soln for this example
length = 63.8 (vs ~84 above)

23p0

.91 24 816

Revised idea - Closest pairs first

Repeatedly join the closest pair of points
(s.t. result can still be part of a
single loop in the end. I.e., join
endpoints, but not points in middle,
of path segments already created.)

How does this work on our bad example?

?

24

A bad example for “close pairs”

1

1.5 1.5

25

A bad example for “close pairs”

1

1.5 1.5

6+Ö10 ≈ 9.16

vs

8

26

Something that works

“Brute Force Search”:
For each of the n! = n(n-1)(n-2)…1 orderings of the
points, check the length of the cycle you get
Keep the best one

(Easy to see that it’s correct, but slow!)

27

Two Notes

The two incorrect algorithms were “greedy”
Often very natural & tempting ideas
They make choices that look great “locally” (and never
reconsider them)
When greed works, the algorithms are typically efficient

BUT: often does not work - you get boxed in

Our correct alg avoids this, but is incredibly slow
20! is so large that checking one billion orderings per
second would take 2.4 billion seconds (around 70 years!)

And growing: n! ~ √2 π n • (n/e)n ~ 2O(n log n)

28

The Morals of the Story

Algorithms are important
Many software gains outstrip hardware gains (Moore’s law)

Simple problems can be hard
Factoring, TSP

Simple ideas don’t always work
Nearest neighbor, closest pair heuristics

Simple algorithms can be very slow
Brute-force factoring, TSP

For some problems, even the best algorithms are slow
Course Goals:

formalize these ideas, and
develop more sophisticated approaches

https://xkcd.com/

https://xkcd.com/

