
Depth First Search CSE 417 22AU

Lecture 7

Some Graph Vocabulary

A walk is a list of vertices where you can get from each vertex to
the next along an edge. (repeats allowed).

A path is a list of vertices where you can get from each vertex to
the next, and there are no repeats.

In an undirected graph a connected component is a “piece” of
the graph, it’s a vertex and anything you can reach on a walk
starting at that vertex. A

F

D

E

C

B

G

DFS vs. BFS

In BFS, we explored a graph
“level-wise”

We explored everything
next to the starting vertex.

Then we explored
everything one step further
away.

Then everything one step
further

…

DFS vs. BFS

In DFS, we explore deep
into the graph.

We try to find new
(undiscovered) nodes, then
“backtrack” when we’re out
of new ones.

DFS – pseudocode

In 373, you probably took your BFS code, replaced the queue with a
stack and said “that’s the pseudocode.”

That’s a really nice object lesson in stacks.

No one actually writes DFS that way (except in data structures courses).

You’ll basically always see the recursive version instead. (using the call
stack instead of the data structure stack)

DFS – pseudocode

Instead of using an explicit stack, we’re going to use recursion
The call stack is going to be our stack.

We want to explore as deeply as possible from each of our
outgoing edges

DFS(u)

Mark u as “seen”

For each edge (u,v) //leaving u

If v is not “seen”

DFS(v)

End If

End For

DFS – pseudocode

Both the explicit stack version and the recursive version “are” DFS.

For example, they can both traverse through the graph in the same
fundamental way. You can use them for similar applications.

But they’re not identical – they actually use the stack in different ways. If
you’re trying to convert from one to the other, you’ll have to think
carefully to do it.

Running DFS
DFS(u)

Mark u as “seen”

For each edge (u,v) //leaving u

If v is not “seen”

DFS(v)

End If

End For

A

F

D

E

C

B

G

Start from A

Vertex: A

Last edge used: ---

Vertex: B

Last edge used: --

Vertex: C

Last edge used: --

Vertex: D

Last edge used: --

Vertex: B

Last edge used: (B,C)

Vertex: C

Last edge used: (C,D)

Vertex: D

Last edge used: (D,B)

Vertex: A

Last edge used: (A,B)

Vertex: A

Last edge used: (A,F)

Vertex: E

Last edge used: ---

Vertex: B

Last edge used: (B,E)

Vertex: E

Last edge used: (E,F)

Vertex: F

Last edge used: ---

Vertex: F

Last edge used: (F,D)

Running DFS

A

F

D

E

C

B

G

DFS(u)

Mark u as “seen”

For each edge (u,v) //leaving u

If v is not “seen”

DFS(v)

End If

End For

HEY!

We missed something!

DFS(v) finds exactly the

(unseen) vertices reachable

from 𝑣.

DFS discovery

Reaching Everything

One possible use of DFS is visiting every vertex

How can we make sure that happens?
What did you do for BFS when you had this problem?

Add a while loop, and call DFS from each vertex.

DFS(u)

Mark u as “seen”

For each edge (u,v) //leaving u

If v is not “seen”

DFS(v)

End If

End For

DFSWrapper(G)

For each vertex u of G

If u is not “seen”

DFS(u)

End If

End For

Bells and Whistles
Depending on your application, you may add a few extra lines to
the DFS code to compute the thing you want.
Usually just an extra variable or two per vertex.

For today’s application, we need to know what order vertices come
onto and off of the stack.

DFS(u)

Mark u as “seen”

u.start = counter++

For each edge (u,v) //leaving u

If v is not “seen”

DFS(v)

End If

End For

u.end = counter++

DFSWrapper(G)

counter = 1

For each vertex u of G

If u is not “seen”

DFS(u)

End If

End For

Edge Classification

When we use DFS to search through a graph, we’ll have different “kinds”

of edges.

Like when we did BFS, we had:

Edges that went from level 𝑖 to level 𝑖 + 1
Intra-level edges.

We’ll do a few examples to help classify the edges.

Then do an application of the classification.

Our goal: find a cycle in a directed graph.

Running DFS

A

F

D

E

C

B

G

Start from A

Vertex: A

Last edge used: ---

Vertex: B

Last edge used: --

Vertex: C

Last edge used: --

Vertex: D

Last edge used: --

Vertex: B

Last edge used: (B,C)

Vertex: C

Last edge used: (C,D)

Vertex: D

Last edge used: (D,B)

Vertex: A

Last edge used: (A,B)

Vertex: A

Last edge used: (A,F)

Vertex: E

Last edge used: ---

Vertex: B

Last edge used: (B,E)

Vertex: E

Last edge used: (E,F)

Vertex: F

Last edge used: ---

Vertex: F

Last edge used: (F,D)

DFS(u)

Mark u as “seen”

u.start = counter++

For each edge (u,v) //leaving u

If v is not “seen”

DFS(v)

End If

End For

u.end = counter++1 12

2 11

3 6
4 5

7 10

8 9

A

F

D

E

C

B

G

DFS(u)

Mark u as “seen”

u.start = counter++

For each edge (u,v) //leaving u

If v is not “seen”

DFS(v)

End If

End For

u.end = counter++

The orange edges (the ones where we discovered a new

vertex) form a tree!*

We call them tree edges.

That blue edge went from a descendent to an ancestor

B was still on the stack when we found (B,D).

We call them back edges.

The green edge went from an ancestor to a descendant

F was put on and come off the stack between putting A on

the stack and finding (A,F)

We call them forward edges.

The purple edge went…some other way.

D had been on and come off the stack before we found F

or (F,D)

We call those cross edges.

*Conditions apply. Sometimes the graph is a forest. But we call

them tree edges no matter what.

1 12

2 11

3 6

4 5

7 10

8 9

Edge Classification (for DFS on directed
graphs)
Edge type Definition When is (𝒖, 𝒗) that edge type?

Tree Edges forming the DFS tree (or forest). 𝑣 was not seen before we processed 𝑢, 𝑣 .

Forward From ancestor to descendant in tree. 𝑢 and 𝑣 have been seen, and

u.start < v.start < v.end < u.end

Back From descendant to ancestor in tree. 𝑢 and 𝑣 have been seen, and

v.start < u.start < u.end < v.end

Cross Edges going between vertices without an

ancestor relationship.

𝑢 and 𝑣 have been seen, and

v.start < v.end < u.start < u.end

The third column doesn’t look like it encompasses all possibilities.

It does – the fact that we’re using a stack limits the possibilities:

e.g. u.start < v.start < u.end < v.end is impossible.

And the rules of the algorithm eliminate some other possibilities.

Try it Yourselves!

DFS(u)

Mark u as “seen”

u.start = counter++

For each edge (u,v) //leaving u

If v is not “seen”

DFS(v)

End If

End For

u.end = counter++

DFSWrapper(G)

counter = 0

For each vertex u of G

If u is not “seen”

DFS(u)

End If

End For

A

D

C

EF

B

1 12

2 11

3 10

4 5

6 9

7 8

cross

Actually Using DFS

Here’s a claim that will let us use DFS for something!

DFS run on a directed graph has a back edge if and only if

it has a cycle.

Back Edge Characterization

Forward Direction

If DFS on a graph has a back edge then it has a cycle.

Forward Direction

If DFS on a graph has a back edge then it has a cycle.

Suppose the back edge is (𝑢, 𝑣).

A back edge is going from a descendant to an ancestor.

So we can go from 𝑣 back to 𝑢 on the tree edges.

That sounds like a cycle!

Fixing the Backward Direction

We might not just walk along the cycle in order. Are we going to visit 𝑣𝑘
“in time” or might 𝑣𝑘 , 𝑣0 be a cross edge?

DFS(v) finds exactly the

(unseen) vertices reachable

from 𝑣.

DFS discovery

Fixing the Backward Direction

We might not just walk along the cycle in order. Are we going to visit 𝑣𝑘
“in time” or might 𝑣𝑘 , 𝑣0 be a cross edge?

Suppose G has a cycle 𝑣0, 𝑣1, … , 𝑣𝑘.

Without loss of generality, let 𝑣0 be the first node on the cycle DFS
marks as seen.

𝑣𝑘 is reachable from 𝑣0 so we must reach 𝑣𝑘 before 𝑣0 comes off the
stack.

When we get to 𝑣𝑘 , it has an edge to 𝑣0 but 𝑣0 is seen, so it must be a
back edge.

Summary

A directed graph has a back edge if and only if it has a

cycle.

Back Edge Characterization

DFS(v) finds exactly the (unseen) vertices reachable from 𝑣.

DFS discovery

Edge Classification (for DFS on directed
graphs)
Edge type Definition When is (𝒖, 𝒗) that edge type?

Tree Edges forming the DFS tree (or forest). 𝑣 was not seen before we processed 𝑢, 𝑣 .

Forward From ancestor to descendant in tree. 𝑢 and 𝑣 have been seen, and

u.start < v.start < v.end < u.end

Back From descendant to ancestor in tree. 𝑢 and 𝑣 have been seen, and

v.start < u.start < u.end < v.end

Cross Edges going between vertices without an

ancestor relationship.

𝑢 and 𝑣 have been seen, and

v.start < v.end < u.start < u.end

The third column doesn’t look like it encompasses all possibilities.

It does – the fact that we’re using a stack limits the possibilities:

e.g. u.start < v.start < u.end < v.end is impossible.

And the rules of the algorithm eliminate some other possibilities.

BFS/DFS caveats and cautions

Edge classifications are different for directed graphs and undirected
graphs.

DFS in undirected graphs don’t have cross edges.

BFS in directed graphs can have edges skipping levels (only as back
edges, skipping levels up though!)

Summary – Graph Search Applications

BFS

Shortest Paths (unweighted)
graphs)

DFS

Cycle detection (directed graphs)

Topological sort

Strongly connected components

Cut edges (on homework)

EITHER

2-coloring

Connected components (undirected)

Usually use BFS –

easier to understand.

Graph Modeling

Your turn: Find Strongly Connected
Components

D

C F

B EA K

J

{A}, {B}, {C,D,E,F}, {J,K}

A subgraph C such that every pair of vertices in C is connected via

some walk in both directions, and there is no other vertex which is

connected to every vertex of C in both directions.

Strongly Connected Component

Problem 1: Ordering Dependencies

Given a directed graph G, where we have an edge from u to v if u must
happen before v.

We can only do things one at a time, can we find an order that respects
dependencies?

Given: a directed graph G

Find: an ordering of the vertices so all edges go from left to right.

Topological Sort (aka Topological Ordering)

Uses:

Compiling multiple files

Graduating

Topological Ordering

A course prerequisite chart and a possible topological ordering.

CSE 373 19 SP - KASEY CHAMPION 32

Math 126

CSE 142

CSE 143

CSE 373

CSE 374

CSE 417

Math 126 CSE 142 CSE 143 CSE 373 CSE 374 CSE 417

Problem 2

Given a graph, find its strongly connected components

D

C F

B EA K

J

1

3 4

2

How do these work?

A couple of different ways to use DFS to find strongly connected
components.

Wikipedia has the details.

High level: need to keep track of “highest point” in DFS tree you can reach back up
to. Similar idea on undirected graphs on HW2.

A homework problem will have a simple version.

Topological sort

You saw an algorithm in 373

Important thing: both run in Θ(𝑚 + 𝑛) time.

Designing New Algorithms

When you need to design a new algorithm on graphs, whatever you do
is probably going to take at least Ω(𝑚 + 𝑛) time.

So you can run any 𝑂(𝑚 + 𝑛) algorithm as “preprocessing”

Finding connected components (undirected graphs)

Finding SCCs (directed graphs)

Do a topological sort (DAGs)

Designing New Algorithms

Finding SCCs and topological sort go well together:

From a graph 𝐺 you can define the “meta-graph” 𝐺𝑆𝐶𝐶

(aka “condensation”, aka “graph of SCCs”)

𝐺𝑆𝐶𝐶 has a vertex for every SCC of 𝐺

There’s an edge from 𝑢 to 𝑣 in 𝐺𝑆𝐶𝐶 if and only if there’s an edge in 𝐺
from a vertex in 𝑢 to a vertex in 𝑣.

Why Find SCCs?

Let’s build a new graph out of them! Call it 𝐺𝑆𝐶𝐶

Have a vertex for each of the strongly connected components

Add an edge from component 1 to component 2 if there is an edge from a vertex
inside 1 to one inside 2.

D

C F

B EA K

J

1

3 4

2

Designing New Graph Algorithms

Not a common task – most graph problems have been asked before.

When you need to do it, Robbie recommends:

Start with a simpler case (topo-sorted DAG, or [strongly] connected graph).

A HW2 problem walks you through the process of designing an algorithm by:

1. Figuring out what you’d do if the graph is strongly connected

2. Figuring out what you’d do if the graph is a topologically ordered DAG

3. Stitching together those two ideas (using 𝐺𝑆𝐶𝐶).

