
Wrapping Up Reductions CSE 417 Winter 21

Lecture 24



Announcements

We’re (probably) going to get through the content I’ve planned a 
lecture-or-two before the end of the quarter.

I’ve listed a couple of possible topics on this Ed thread

“Heart” the ones you like. 

https://edstem.org/us/courses/3119/discussion/289810


Logistics for the final

Going up on the webpage soon (hopefully tonight)

Along with practice material

Big thing you need to know:

Planning to release final 11:59 PM Sunday of finals week, due 11:59 PM 
Wednesday of Finals week

You’d have the full 3 days to work if you want to (but goal when writing 
it will be something that could be done in a “normal” 2 hour exam)

If you have some reason that you really need to offset that by a day, let 
me know as soon as possible (email or private Ed post).



3-Coloring ≤ 3-SAT

Variables: is this vertex red? Blue? Green? (can’t have just one variable, 
let’s just have three).

Constraints?

If (𝑢, 𝑣) is an edge, then 𝑢 and 𝑣 are different colors.

𝑢 gets exactly one color. 



3-Coloring ≤ 3-SAT

Variables: is this vertex red? Blue? Green? (can’t have just one variable, 
let’s just have three).

𝑥𝑢,𝑟 , 𝑥𝑢,𝑏 , 𝑥𝑢,𝑔

Constraints?

If (𝑢, 𝑣) is an edge, then 𝑢 and 𝑣 are different colors.

𝑢 gets exactly one color. 

These are going to take a bit of work:



Edge Requirements

We need to make sure the edges are different colors.

As an example

If 𝑢 is red, and (𝑢, 𝑣) is an edge, then 𝑣 is blue OR 𝑣 is green.

𝑥𝑢,𝑟 == 𝐹𝑎𝑙𝑠𝑒 || 𝑥𝑣,𝑏 == 𝑇𝑟𝑢𝑒|| 𝑥𝑣,𝑔 == 𝑇𝑟𝑢𝑒

Law of implication: “if 𝑝 then 𝑞” is equivalent to ! 𝑝||𝑞.



Edge Constraints

All combinations constraints:

English – for each edge (𝒖, 𝒗) SAT 

If 𝑢 is red, then 𝑣 is blue or green 𝑥𝑢,𝑟 == 𝐹𝑎𝑙𝑠𝑒 || 𝑥𝑣,𝑏 == True || 𝑥𝑣,𝑔 == 𝑇𝑟𝑢𝑒

If 𝑢 is blue, then 𝑣 is red or green 𝑥𝑢,𝑏 == 𝐹𝑎𝑙𝑠𝑒|| 𝑥𝑣,𝑟 == True || 𝑥𝑣,𝑔 == 𝑇𝑟𝑢𝑒

If 𝑢 is green, then 𝑣 is red or blue 𝑥𝑢,𝑔 == 𝐹𝑎𝑙𝑠𝑒|| 𝑥𝑣,𝑟 == True || 𝑥𝑣,𝑏 == 𝑇𝑟𝑢𝑒

If 𝑣 is red, then 𝑢 is blue or green 𝑥𝑣,𝑟 == 𝐹𝑎𝑙𝑠𝑒 || 𝑥𝑢,𝑏 == True || 𝑥𝑢,𝑔 == 𝑇𝑟𝑢𝑒

If 𝑣 is blue, then 𝑢 is red or green 𝑥𝑣,𝑏 == 𝐹𝑎𝑙𝑠𝑒|| 𝑥𝑢,𝑟 == True || 𝑥𝑢,𝑔 == 𝑇𝑟𝑢𝑒

If 𝑣 is green, then 𝑢 is red or blue 𝑥𝑣,𝑔 == 𝐹𝑎𝑙𝑠𝑒|| 𝑥𝑢,𝑟 == True || 𝑥𝑢,𝑏 == 𝑇𝑟𝑢𝑒

Some of these aren’t strictly necessary (are implied by the others) but better safe than sorry.



Are those constraints enough?

Suppose we used those constraints, ran the 3-SAT solver on these 
constraints, and just return what it says.

Are we done? If this reduction is correct, explain to each other why!
If it’s not correct explain why not.

English – for each edge (𝒖, 𝒗) SAT 

If 𝑢 is red, then 𝑣 is blue or green 𝑥𝑢,𝑟 == 𝐹𝑎𝑙𝑠𝑒 || 𝑥𝑣,𝑏 == True || 𝑥𝑣,𝑔 == 𝑇𝑟𝑢𝑒

If 𝑢 is blue, then 𝑣 is red or green 𝑥𝑢,𝑏 == 𝐹𝑎𝑙𝑠𝑒|| 𝑥𝑣,𝑟 == True || 𝑥𝑣,𝑔 == 𝑇𝑟𝑢𝑒

If 𝑢 is green, then 𝑣 is red or blue 𝑥𝑢,𝑔 == 𝐹𝑎𝑙𝑠𝑒|| 𝑥𝑣,𝑟 == True || 𝑥𝑣,𝑏 == 𝑇𝑟𝑢𝑒

If 𝑣 is red, then 𝑢 is blue or green 𝑥𝑣,𝑟 == 𝐹𝑎𝑙𝑠𝑒 || 𝑥𝑢,𝑏 == True || 𝑥𝑢,𝑔 == 𝑇𝑟𝑢𝑒

If 𝑣 is blue, then 𝑢 is red or green 𝑥𝑣,𝑏 == 𝐹𝑎𝑙𝑠𝑒|| 𝑥𝑢,𝑟 == True || 𝑥𝑢,𝑔 == 𝑇𝑟𝑢𝑒

If 𝑣 is green, then 𝑢 is red or blue 𝑥𝑣,𝑔 == 𝐹𝑎𝑙𝑠𝑒|| 𝑥𝑢,𝑟 == True || 𝑥𝑢,𝑏 == 𝑇𝑟𝑢𝑒

Fill out the poll everywhere 

for Activity Credit!

Go to pollev.com/cse417 and 

login with your UW identity



Are those constraints enough?

Suppose we used those constraints, ran the 3-SAT solver on what we 
got.

If the graph is 3-colorable, then the 3-SAT instance has a solution (pick 
your favorite coloring and set the variables to match that coloring). 

If the graph is not 3-colorable

The 3-SAT solver will still say there’s a solution for this instance. Just set 
every variable to false!



Consistency Constraints

Reductions often need extra constraints/structures.

When you say “I want this variable to mean X” you really need to force 
the variable to mean X.

So if you want a coloring, you need to make sure even “well, yeah of 
course that’s what I meant” requirements are explicit. 

What are we missing? Every vertex needs exactly one color.



Consistency

More constraints:

English – for each vertex SAT

If 𝑢 is red, then 𝑢 cannot be blue 𝑥𝑢,𝑟 == 𝐹𝑎𝑙𝑠𝑒 || 𝑥𝑢,𝑏 == False

If 𝑢 is red, then 𝑢 cannot be green 𝑥𝑢,𝑟 == 𝐹𝑎𝑙𝑠𝑒 || 𝑥𝑢,𝑔 == False

If 𝑢 is blue, then 𝑢 cannot be red 𝑥𝑢,𝑏 == 𝐹𝑎𝑙𝑠𝑒 || 𝑥𝑢,𝑟 == False

If 𝑢 is blue, then 𝑢 cannot be green 𝑥𝑢,𝑏 == 𝐹𝑎𝑙𝑠𝑒 || 𝑥𝑢,𝑔 == False

If 𝑢 is green, then 𝑢 cannot be red 𝑥𝑢,𝑔 == 𝐹𝑎𝑙𝑠𝑒 || 𝑥𝑢,𝑟 == False

If 𝑢 is green, then 𝑢 cannot be blue 𝑥𝑢,𝑔 == 𝐹𝑎𝑙𝑠𝑒 || 𝑥𝑢,𝑏 == False

𝑢 gets a color! 𝑥𝑢,𝑟 == 𝑇𝑟𝑢𝑒 || 𝑥𝑢,𝑔 == 𝑇𝑟𝑢𝑒|| 𝑥𝑢,𝑏 == 𝑇𝑟𝑢𝑒



From 2 to 3.

Hang on! Is this allowed in 3-SAT?

𝑥𝑢,𝑟 == 𝐹𝑎𝑙𝑠𝑒 || 𝑥𝑢,𝑏 == False

The definition said 3 items each…

A trick to fix it. Make two copies, or in a dummy variable 𝑑 being True in 
one and false in the other.

𝑥𝑢,𝑟 == 𝐹𝑎𝑙𝑠𝑒 || 𝑥𝑢,𝑏 == False || 𝑑 == 𝑇𝑟𝑢𝑒

𝑥𝑢,𝑟 == 𝐹𝑎𝑙𝑠𝑒 || 𝑥𝑢,𝑏 == False || 𝑑 == 𝐹𝑎𝑙𝑠𝑒

𝑑 will make one of the two true. The other copy is satisfied if and only if 
the original one was.



Reduction

Given a graph 𝐺, we make the following 3-SAT instance

Variables: 𝑥𝑢,𝑟 , 𝑥𝑢,𝑔, 𝑥𝑢,𝑏 for each vertex 𝑢

Constraints: As described on the last few slides.

Run a 3SATSolver. 

Return whatever it returns.



Running Time?

We need 𝑛 variables and 6𝑚 + 13𝑛 constraints.

Making them is mechanical, definitely polynomial time.



Correctness

Our correctness proofs are usually:

Certificate for 3-coloring becomes a certificate for 3-SAT

The only certificates for 3-SAT come from certificates for 3-coloring

Let’s start with

If 𝐺 is 3-colorable, then the reduction says YES.



Correctness

If 𝐺 is 3-colorable, then the reduction says YES.

If 𝐺 is 3-colorable, then there is a 3-coloring. From any 3-coloring, set 
𝑥𝑢,𝑟 to be true if 𝑢 is red and false otherwise.

𝑥𝑢,𝑔 to be true if 𝑢 is green and false otherwise.

𝑥𝑢,𝑏 to be true if 𝑢 is blue and false otherwise.

The constraints are satisfied (for the reasons listed on the prior slides)

So the 3-SAT algorithm must say the constraints are satisfiable, and the 
reduction returns true!



Correctness

If the reduction returns YES, then 𝐺 was 3-colorable.

If the reduction returns YES, then the 3-SAT algorithm returned YES, so 
the 3-SAT instance had a satisfying assignment.

We can convert the variables to a coloring:

For every 𝑢, exactly one of 𝑥𝑢,𝑟 , 𝑥𝑢,𝑔, 𝑥𝑢,𝑟 is true. We have a constraint 
requiring at least one, and constraints preventing more than one 
variable for the same vertex being true. 

Color the vertices the associated colors. Since every vertex is colored, at 
least one of the constraints is active for each edge, so we have a valid 
coloring.



Two Last Thoughts

I didn’t care at all about the efficiency of our reductions (other than 
them being polynomial time).

Why?

Well if it’s worse than polynomial it doesn’t count! (Goal is to get a
polynomial-time algorithm for problem 𝐴, if we write one for problem 
𝐵).

But…do we expect to ever run these reductions?

Not really!...If we ever find an efficient 3-SAT algorithm we can always 
go back and make them efficient.



Two Last Thoughts

Vertex Cover is NP-complete (you can do a reduction from independent 
set. It’s good practice!)

But we wrote a polynomial time algorithm for vertex cover didn’t we? 
We wrote two– a DP one and an LP one. What’s going on? 

The algorithms we saw only handled special cases – Vertex cover on 
trees or vertex cover on bipartite graphs. We didn’t prove 𝑃 = 𝑁𝑃. We 
carved off part of the problem that was easy and solved that (solved 
only the “easy” instances).



Why are P and NP interesting?



Why do we care?

We’ve seen a few NP-complete problems.

3-SAT, 3-coloring, Hamiltonian Path/Cycle, Independent Set.

But why should we care about those few?

Just memorize them and avoid them, right?

It’s more than just a few…



NP-Complete Problems

But Wait! There’s more!

A lot of problems are NP-

complete

Karp’s Theorem (1972)



NP-Complete Problems

But Wait! There’s more!

By 1979, at least 300 problems had been 
proven NP-complete.

Garey and Johnson put a list of all the NP-
complete problems they could find in this 
textbook.

Took almost 100 pages to just list them all.

No one has made a comprehensive list since.



NP-Complete Problems

But Wait! There’s more!

In December 2018, mathematicians and computer scientists put papers 
on the arXiv claiming to show (at least) 25 more problems are NP-
complete.

There are literally thousands of NP-complete problems known. 



Examples

Given a directed graph, report 

if there is a path from s to t of 

length at most 𝑘.

Short Path

Given a directed graph, report 

if there is a path from s to t of 

length at least 𝑘.

Long Path

In P NP-Complete

There are literally thousands of NP-complete problems.

And some of them look weirdly similar to problems we do know efficient 

algorithms for.



Examples

Given a weighted graph, find a 

spanning tree (a set of edges 

that connect all vertices) of 

weight at most 𝑘.

Light Spanning Tree

Given a weighted graph, find a 

tour (a walk that visits every 

vertex and returns to its start) 

of weight at most 𝑘.

Traveling Salesperson

The electric company just needs a greedy algorithm to lay its wires.

Amazon doesn’t know a way to optimally route its delivery trucks.

In P NP-Complete



Examples

Given an undirected graph, can 

the vertices be labeled red and 

blue with no edge having the 

same colors on both endpoints?

2-Coloring

Given an undirected graph, can the 

vertices be labeled red, blue, and 

green with no edge having the 

same colors on both endpoints?

3-Coloring

Just changing a number by one takes us from one of the first problems we 

solved (and one of the fastest algorithms we’ve seen) to something we 

don’t know how to solve efficiently at all.

In P NP-Complete



Dealing with NP-hardness

Thousands of times someone has wanted to find an efficient algorithm 
for a problem…

…only to realize that the problem was NP-hard.

Takeaway 1:

Even though we haven’t proven 𝑃 ≠ 𝑁𝑃 (i.e. we haven’t proven any of 
these problems don’t have an efficient algorithm), this is good evidence 
that we shouldn’t by trying to solve 𝑁𝑃-hard problems.

It’s probably not just a matter of finding the “right representation”/”right 
angle on the problem” we’ve tried a few thousand of them.



Why Should you care?



Why should you care about P vs. NP

Most computer scientists are convinced that P≠NP.
A survey of experts (PhDs in CS) found 98% of them thought P≠NP.

And the median guess was that we’re at least 50 years from getting the answer.

Why should you care about this problem?

It’s your chance for:

$1,000,000. The Clay Mathematics Institute will give $1,000,000 to 
whoever solves P vs. NP (or any of the 5 remaining mathematical 
conjectures they listed)

To get a Turing Award
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Why should you care about P vs. NP

Most computer scientists are convinced that P≠NP.
A survey of experts (PhDs in CS) found 98% of them thought P≠NP.

And the median guess was that we’re at least 50 years from getting the answer.

Why should you care about this problem?

It’s your chance for:

$1,000,000. The Clay Mathematics Institute will give $1,000,000 to 
whoever solves P vs. NP (or any of the 5 remaining mathematical 
conjectures they listed)

To get a Turing Award the Turing Award renamed after you. 

CSE 373 19 SU - ROBBIE WEBER 31



Why Should You Care if P=NP?

Suppose P=NP. 

Specifically that we found a genuinely in-practice efficient algorithm for 
an NP-complete problem. What would you do?

$1,000,000 from the Clay Math Institute obviously, but what’s next?

CSE 373 19 SU - ROBBIE WEBER 32



Why Should You Care if P=NP?

We found a genuinely in-practice efficient algorithm for an NP-
complete problem. What would you do?

Another $5,000,000 from the Clay Math Institute

Put mathematicians out of work?

Decrypt (essentially) all current internet communication. See your ethics 
project.

A world where P=NP is a very very different place from the world we 
live in now.

CSE 373 19 SU - ROBBIE WEBER 33



Why Should You Care if P≠NP?

We already expect P≠NP. Why should you care when we finally prove it?

P≠NP says something fundamental about the universe.

For some questions there is not a clever way to find the right answer

Even though you’ll know it when you see it.

There is actually a way to obscure information, so it cannot be found 
quickly no matter how clever you are.
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Why Should You Care if P≠NP?

To prove P≠NP we need to better understand the differences between 
problems. 

Why do some problems allow easy solutions and others don’t?

What is the structure of these problems?

We don’t care about P vs NP just because it has a huge effect about 
what the world looks like.

We will learn a lot about computation along the way.

CSE 373 19 SU - ROBBIE WEBER 35



Dealing With NP-hardness



Dealing with NP-hardness

Thousands of times someone has wanted to find an efficient algorithm 
for a problem…

…only to realize that the problem was NP-hard.

Takeaway 2:

Sooner or later it will happen to one of you.

What do you do if you think your problem is NP-complete?



Dealing with NP-completeness

You just started your new job at Amazon. Your boss asks you to look into the 
following problem

You have a graph, each vertex is where a specific truck has to do a delivery. 
Starting from the warehouse, how do you make all the deliveries and return to the 
warehouse using the minimum amount of gas.

CSE 373 19 SU - ROBBIE WEBER 38

Given a weighted graph, find a tour (a walk that visits every vertex 

and returns to its start) of weight at most 𝑘.

Traveling Salesperson



Step 1: Make sure your problem is really 𝑁𝑃-
hard

Understand exactly what your inputs and outputs are. 

2-coloring and 3-coloring are very different.

Finding a vertex cover of a general graph is 𝑁𝑃-hard. Finding a vertex 
cover of a bipartite graph can be done in multiple very efficient ways.

Understand exactly what you’re being asked to solve. 
Realizing you’re trying to solve a problem on a tree instead of a general 
graph almost always makes DP possible. 
Are your constraints linear (can you use an LP)? 
Are your constraints simple (are you solving 2SAT instead of 3SAT)?



Step 2: It still looks hard

Now that you know exactly what you’re trying to solve, and you still 
can’t solve it…

Next try to prove hardness (i.e. do a reduction).

Usually there’s a similar problem you can convert from! 

It’s easier to do a reduction from 3-coloring to 5-coloring than from 
Hamiltonian Path to 5-coloring.

Both reductions exist but there’s no need to flex here, look up a list of 
NP-complete problems and see what’s similar looking. 



Step 3: ???

So you go to your boss and say

“Sorry, problem’s NP-hard. I proved it.”

And your boss says:

“that’s a cool proof and all, but really. We need to tell the drivers where
to go tomorrow…and we need to use less gas.



Step 3…wellllll, maybe not

Can you write your problem as a 𝑆𝐴𝑇 instance?
Ok, you definitely can if it’s in 𝑁𝑃, that’s what 𝑁𝑃-hardness means…can you write it 
as a reasonably-sized SAT instance (𝑛3 instead of 1000000𝑛100)?

There are SAT libraries that often run pretty fast. In the worst-case they’re still 
exponential, but you don’t always hit the worst case!

Can you write your problem as an integer program? 
Run an integer programming library and see what happens!

Can you write your problem as a graph problem?

Many are very well studied for “simple” graphs (e.g. “planar” graphs, ones that can 
be drawn on a piece of paper without edges crossing).



Step 4 – Permanent Solutions

Those exponential time algorithms are great as band-aids. 

If it’s a one-time thing, or just a “we’ll run this about once a week, if it 
takes too long once in a while no big deal” these are fine.

But what if you need a guarantee! 

Your code is running every night, and you need an answer by 6 AM or
the delivery trucks don’t go out.



Step 4 – Permanent Solutions

Two good options:

Exponential algorithms that aren’t-as-slow-as-others
Give you an exact answer; won’t take polynomial time but will be guaranteed take 
you less time than brute force.

Approximation algorithms
Don’t give you the best answer, but guarantees a reasonable amount of time, and a 
guaranteed-pretty-good-answer.

We’ll learn about these next time!


