
Even More Reductions CSE 417 Winter 21

Lecture 23



Where are we?

Last week: What do we do when we don’t know how to solve a 
problem?

𝐴 ≤ 𝐵 (“𝐴 reduces to 𝐵” “we reduced from 𝐴 to 𝐵”)

If we write a polynomial-time algorithm for 𝐵 then we get a polynomial 
time algorithm for 𝐴 for free!

The problem 𝐵 is 𝑁𝑃-hard if every problem 𝐴 in 𝑁𝑃 reduces to 𝐵.

3-SAT is 𝑁𝑃-complete (both 𝑁𝑃-hard and in 𝑁𝑃).



This Week

Today: More reduction examples.

Overarching Goal: 

Even problems that look very different can be reduced to each other.

We’ll do a couple examples together, so you find it plausible.

On Wednesday, what’s the significance of these reductions?



Hamilton

On a directed graph 𝐺:

A Hamiltonian Path is a path that visits every vertex exactly once.

A Hamiltonian Cycle is a Hamiltonian Path with an extra edge 
connecting the first vertex to the last vertex. 

Assume that Hamiltonian Path is NP-hard (it is)

Use that to prove Hamiltonian Cycle is NP-hard.

Fill out the poll everywhere for 

Activity Credit!

Go to pollev.com/cse417 and login 

with your UW identity



Which direction?

Reduce FROM the known hard problem TO the new problem.

Want to show Hamiltonian Path ≤ Hamiltonian Cycle.



Reduction

Let 𝐺 be the instance for Hamiltonian Path

Make 𝐻 a copy of 𝐺 with an extra vertex 𝑢 added.

For every vertex 𝑣, add an edge from 𝑣 to 𝑢 and from 𝑢 to 𝑣

Run the Hamiltonian Cycle Solver on 𝐻

Return what it returns.



Correctness

If 𝐺 has a Hamiltonian Path,

Then there is a Hamiltonian Cycle in 𝐻 by following the path in 𝐺 going 
to 𝑢 and going back to the start.

So we correctly return YES.



Correctness

If our reduction returns YES, then 𝐻 had a Hamiltonian Cycle.

Delete 𝑢 (and its edges from the cycle)

Since a Hamiltonian Cycle visits each vertex exactly once, what remains 
is a path that visits each vertex (except 𝑢) exactly once.

That’s a Hamiltonian Path! 

So 𝐺 has a Hamiltonian Path.



Reductions

We saw a reduction between two very similar (on the surface) problems 
when we reduced from 2-coloring to 3-coloring.

The real power of reductions is when problems look very different on 
the surface but you can still reduce from one to the other.

We’re going to do a couple more reductions with varying levels of 
differences between the problems.



What’s 3-SAT?

Input: A list of Boolean variables 𝑥1, … , 𝑥𝑛

A list of constraints, all of which must be met.
Each constraint is of the form:

( (xi == <T,F>) || (xj == <T,F>) || (xk == <T/F>) )

ORed together, always exactly three variables, you can choose T/F 
independently for each.

Output: true if there is a setting of the variables where all constraints are met, false 
otherwise.

Why is it called 3-SAT? 3 because you have 3 variables per constraint
SAT is short for “satisfiability” can you satisfy all of the constraints?



3-SAT ≤ Independent Set

Independent Set: Input: an undirected graph 𝐺, and an integer 𝑘
Output: true is there an independent set of size at least 𝑘 and false 
otherwise.

An independent set is a set of vertices so that there are no edges 
directly connecting them (i.e. no edge has both endpoints in the set).

This reduction will show Independent Set is NP-complete!



The Reduction

What do we do with our 3-SAT instance?

High level idea: we want the independent set to correspond to the 
things that make the constraints true.

An independent set of size at least “number of constraints” will 
hopefully correspond to a setting of the variables.



Reduction Idea

Connecting two vertices by an edge means we can have at most one in 
our independent set.

Have the vertices correspond to the pieces of the constraints.

𝑥1 == 𝑇𝑟𝑢𝑒||𝑥2 == 𝐹𝑎𝑙𝑠𝑒||𝑥3 == 𝑇𝑟𝑢𝑒
𝑥1 == 𝑇𝑟𝑢𝑒||𝑥2 == 𝑇𝑟𝑢𝑒||𝑥4 == 𝑇𝑟𝑢𝑒

𝑥1, 

T

𝑥2, 

F

𝑥3, 

T

𝑥1, 

T

𝑥2, 

T

𝑥4, 

T

Which Booleans can’t we have both of?

I.e. which pairs don’t make sense together?

Add edges between the same 

variable set to opposite values.



Reduction Idea Step 2

Connecting two vertices by an edge means we can have at most one in 
our independent set.

How big of an independent set do we want? Would be nice to count 
how many constraints are satisfied…need to make sure we take only one 
vertex per constraint.

𝑥1 == 𝑇𝑟𝑢𝑒||𝑥2 == 𝐹𝑎𝑙𝑠𝑒||𝑥3 == 𝑇𝑟𝑢𝑒
𝑥1 == 𝑇𝑟𝑢𝑒||𝑥2 == 𝑇𝑟𝑢𝑒||𝑥4 == 𝑇𝑟𝑢𝑒

𝑥1, 

T

𝑥2, 

F

𝑥3, 

T

𝑥1, 

T

𝑥2, 

T

𝑥4, 

T

Need only one vertex per constraint.

Add edges between all vertices 

coming from one constraint.



Reduction

Given a 3-SAT instance, make the graph 𝐺 described on the last slide.

Ask the IND-SET library if there is an independent set of size at least 
(number of constraints of the 3-SAT instance) in 𝐺.

Return what the IND-SET library says.



Correctness

If there is a satisfying assignment for the 3-SAT instance, then there is a 
way to set the variables so that:

1. At least one part of every constraint is true

2. Every variable is set to true or false, not both.

In the graph, there is a large-enough independent set:

For each constraint, choose one of the true pieces (if there’s more than 
one), and take the corresponding vertex. Is it an independent set?
We take only one per group, so the within group edges aren’t included.
Each variable is only true or false, so we don’t include any of the other edges.



Correctness, Part 2

Suppose there is an independent set of size at least (number of 
constraints)

Because of the “in-group” edges, an independent set has at most one 
per group. Thus every group has exactly one vertex in the independent 
set.

Set variables of the 3-SAT instance to match the chosen variables. We 
won’t try to set variables “inconsistently” (i.e. no variable is both true 
and false) because of the edges we added between groups. 

And we satisfy every constraint (because we chose a good setting of 
one piece with the independent set). So the indpendent set was 
satisfiable!



So…

3-SAT ≤ INDEPENDENT SET

That means that INDEPENDENT SET is 𝑁𝑃-hard.

(And, since it’s also in 𝑁𝑃, it’s 𝑁𝑃-complete.

Even though they look very different, the tasks “find an efficient 
algorithm to solve 3-SAT” and “find an efficient algorithm to solve 
INDEPENDENT SET” are equivalent!



Another Reduction

More reductions between different looking problems.

We’ll show 3-Coloring ≤ 3-SAT.

This reduction does not show 3-coloring is 𝑁𝑃-hard.

It is, but we’d need the reduction to go the other direction to 
demonstrate it.



3-Coloring ≤ 3-SAT

Need to transform a 3-coloring instance (a problem about a graph)

To a 3-SAT instance (a problem about variables and constraints)

Those look very different!!

It’s going to take some creativity to make the conversion.

Your main takeaway from this lecture is not these particular reductions 
or these particular techniques.

Your takeaway is “wow, even if problems can look pretty different, they 
can be closely related!”



3-Coloring ≤ 3-SAT

Need to transform a 3-coloring instance (a problem about a graph)

To a 3-SAT instance (a problem about variables and constraints).

3-SAT talks about Boolean variables and constraints.

What variables could we use to describe coloring? 

What constraints would the coloring impose?



3-Coloring ≤ 3-SAT

Variables: is this vertex red? Blue? Green? (can’t have just one variable, 
let’s just have three).

Constraints?

If (𝑢, 𝑣) is an edge, then 𝑢 and 𝑣 are different colors.

𝑢 gets exactly one color. 



3-Coloring ≤ 3-SAT

Variables: is this vertex red? Blue? Green? (can’t have just one variable, 
let’s just have three).

𝑥𝑢,𝑟 , 𝑥𝑢,𝑏 , 𝑥𝑢,𝑔

Constraints?

If (𝑢, 𝑣) is an edge, then 𝑢 and 𝑣 are different colors.

𝑢 gets exactly one color. 

These are going to take a bit of work:



Edge Requirements

We need to make sure the edges are different colors.

As an example

If 𝑢 is red, and (𝑢, 𝑣) is an edge, then 𝑣 is blue OR 𝑣 is green.

𝑥𝑢,𝑟 == 𝐹𝑎𝑙𝑠𝑒 || 𝑥𝑣,𝑏 == 𝑇𝑟𝑢𝑒|| 𝑥𝑣,𝑔 == 𝑇𝑟𝑢𝑒

Law of implication: “if 𝑝 then 𝑞” is equivalent to ! 𝑝||𝑞.



Edge Constraints

All combinations constraints:

English – for each edge (𝒖, 𝒗) SAT 

If 𝑢 is red, then 𝑣 is blue or green 𝑥𝑢,𝑟 == 𝐹𝑎𝑙𝑠𝑒 || 𝑥𝑣,𝑏 == True || 𝑥𝑣,𝑔 == 𝑇𝑟𝑢𝑒

If 𝑢 is blue, then 𝑣 is red or green 𝑥𝑢,𝑏 == 𝐹𝑎𝑙𝑠𝑒|| 𝑥𝑣,𝑟 == True || 𝑥𝑣,𝑔 == 𝑇𝑟𝑢𝑒

If 𝑢 is green, then 𝑣 is red or blue 𝑥𝑢,𝑔 == 𝐹𝑎𝑙𝑠𝑒|| 𝑥𝑣,𝑟 == True || 𝑥𝑣,𝑏 == 𝑇𝑟𝑢𝑒

If 𝑣 is red, then 𝑢 is blue or green 𝑥𝑣,𝑟 == 𝐹𝑎𝑙𝑠𝑒 || 𝑥𝑢,𝑏 == True || 𝑥𝑢,𝑔 == 𝑇𝑟𝑢𝑒

If 𝑣 is blue, then 𝑢 is red or green 𝑥𝑣,𝑏 == 𝐹𝑎𝑙𝑠𝑒|| 𝑥𝑢,𝑟 == True || 𝑥𝑢,𝑔 == 𝑇𝑟𝑢𝑒

If 𝑣 is green, then 𝑢 is red or blue 𝑥𝑣,𝑔 == 𝐹𝑎𝑙𝑠𝑒|| 𝑥𝑢,𝑟 == True || 𝑥𝑢,𝑏 == 𝑇𝑟𝑢𝑒

Some of these aren’t strictly necessary (are implied by the others) but better safe than sorry.



Are those constraints enough?

Suppose we used those constraints, ran the 3-SAT solver on these 
constraints, and just return what it says.

Are we done? If this reduction is correct, explain to each other why!
If it’s not correct explain why not.

English – for each edge (𝒖, 𝒗) SAT 

If 𝑢 is red, then 𝑣 is blue or green 𝑥𝑢,𝑟 == 𝐹𝑎𝑙𝑠𝑒 || 𝑥𝑣,𝑏 == True || 𝑥𝑣,𝑔 == 𝑇𝑟𝑢𝑒

If 𝑢 is blue, then 𝑣 is red or green 𝑥𝑢,𝑏 == 𝐹𝑎𝑙𝑠𝑒|| 𝑥𝑣,𝑟 == True || 𝑥𝑣,𝑔 == 𝑇𝑟𝑢𝑒

If 𝑢 is green, then 𝑣 is red or blue 𝑥𝑢,𝑔 == 𝐹𝑎𝑙𝑠𝑒|| 𝑥𝑣,𝑟 == True || 𝑥𝑣,𝑏 == 𝑇𝑟𝑢𝑒

If 𝑣 is red, then 𝑢 is blue or green 𝑥𝑣,𝑟 == 𝐹𝑎𝑙𝑠𝑒 || 𝑥𝑢,𝑏 == True || 𝑥𝑢,𝑔 == 𝑇𝑟𝑢𝑒

If 𝑣 is blue, then 𝑢 is red or green 𝑥𝑣,𝑏 == 𝐹𝑎𝑙𝑠𝑒|| 𝑥𝑢,𝑟 == True || 𝑥𝑢,𝑔 == 𝑇𝑟𝑢𝑒

If 𝑣 is green, then 𝑢 is red or blue 𝑥𝑣,𝑔 == 𝐹𝑎𝑙𝑠𝑒|| 𝑥𝑢,𝑟 == True || 𝑥𝑢,𝑏 == 𝑇𝑟𝑢𝑒

Fill out the poll everywhere 

for Activity Credit!

Go to pollev.com/cse417 and 

login with your UW identity



Are those constraints enough?

Suppose we used those constraints, ran the 3-SAT solver on what we 
got.

If the graph is 3-colorable, then the 3-SAT instance has a solution (pick 
your favorite coloring and set the variables to match that coloring). 

If the graph is not 3-colorable

The 3-SAT solver will still say there’s a solution for this instance. Just set 
every variable to false!



Consistency Constraints

Reductions often need extra constraints/structures.

When you say “I want this variable to mean X” you really need to force 
the variable to mean X.

So if you want a coloring, you need to make sure even “well, yeah of 
course that’s what I meant” requirements are explicit. 

What are we missing? Every vertex needs exactly one color.



Consistency

More constraints:

English – for each vertex SAT

If 𝑢 is red, then 𝑢 cannot be blue 𝑥𝑢,𝑟 == 𝐹𝑎𝑙𝑠𝑒 || 𝑥𝑢,𝑏 == False

If 𝑢 is red, then 𝑢 cannot be green 𝑥𝑢,𝑟 == 𝐹𝑎𝑙𝑠𝑒 || 𝑥𝑢,𝑔 == False

If 𝑢 is blue, then 𝑢 cannot be red 𝑥𝑢,𝑏 == 𝐹𝑎𝑙𝑠𝑒 || 𝑥𝑢,𝑟 == False

If 𝑢 is blue, then 𝑢 cannot be green 𝑥𝑢,𝑏 == 𝐹𝑎𝑙𝑠𝑒 || 𝑥𝑢,𝑔 == False

If 𝑢 is green, then 𝑢 cannot be red 𝑥𝑢,𝑔 == 𝐹𝑎𝑙𝑠𝑒 || 𝑥𝑢,𝑟 == False

If 𝑢 is green, then 𝑢 cannot be blue 𝑥𝑢,𝑔 == 𝐹𝑎𝑙𝑠𝑒 || 𝑥𝑢,𝑏 == False

𝑢 gets a color! 𝑥𝑢,𝑟 == 𝑇𝑟𝑢𝑒 || 𝑥𝑢,𝑔 == 𝑇𝑟𝑢𝑒|| 𝑥𝑢,𝑏 == 𝑇𝑟𝑢𝑒



From 2 to 3.

Hang on! Is this allowed in 3-SAT?

𝑥𝑢,𝑟 == 𝐹𝑎𝑙𝑠𝑒 || 𝑥𝑢,𝑏 == False

The definition said 3 items each…

A trick to fix it. Make two copies, or in a dummy variable 𝑑 being True in 
one and false in the other.

𝑥𝑢,𝑟 == 𝐹𝑎𝑙𝑠𝑒 || 𝑥𝑢,𝑏 == False || 𝑑 == 𝑇𝑟𝑢𝑒

𝑥𝑢,𝑟 == 𝐹𝑎𝑙𝑠𝑒 || 𝑥𝑢,𝑏 == False || 𝑑 == 𝐹𝑎𝑙𝑠𝑒

𝑑 will make one of the two true. The other copy is satisfied if and only if 
the original one was.



Reduction

Given a graph 𝐺, we make the following 3-SAT instance

Variables: 𝑥𝑢,𝑟 , 𝑥𝑢,𝑔, 𝑥𝑢,𝑏 for each vertex 𝑢

Constraints: As described on the last few slides.

Run a 3SATSolver. 

Return whatever it returns.



Running Time?

We need 𝑛 variables and 6𝑚 + 13𝑛 constraints.

Making them is mechanical, definitely polynomial time.



Correctness

Our correctness proofs are usually:

Certificate for 3-coloring becomes a certificate for 3-SAT

The only certificates for 3-SAT come from certificates for 3-coloring

Let’s start with

If 𝐺 is 3-colorable, then the reduction says YES.



Correctness

If 𝐺 is 3-colorable, then the reduction says YES.

If 𝐺 is 3-colorable, then there is a 3-coloring. From any 3-coloring, set 
𝑥𝑢,𝑟 to be true if 𝑢 is red and false otherwise.

𝑥𝑢,𝑔 to be true if 𝑢 is green and false otherwise.

𝑥𝑢,𝑏 to be true if 𝑢 is blue and false otherwise.

The constraints are satisfied (for the reasons listed on the prior slides)

So the 3-SAT algorithm must say the constraints are satisfiable, and the 
reduction returns true!



Correctness

If the reduction returns YES, then 𝐺 was 3-colorable.

If the reduction returns YES, then the 3-SAT algorithm returned YES, so 
the 3-SAT instance had a satisfying assignment.

We can convert the variables to a coloring:

For every 𝑢, exactly one of 𝑥𝑢,𝑟 , 𝑥𝑢,𝑔, 𝑥𝑢,𝑟 is true. We have a constraint 
requiring at least one, and constraints preventing more than one 
variable for the same vertex being true. 

Color the vertices the associated colors. Since every vertex is colored, at 
least one of the constraints is active for each edge, so we have a valid 
coloring.



One More Thought

Vertex Cover is NP-complete (you can do a reduction from independent 
set. It’s good practice!)

But we wrote a polynomial time algorithm for vertex cover didn’t we? 
We wrote two– a DP one and an LP one. What’s going on? 

The algorithms we saw only handled special cases – Vertex cover on 
trees or vertex cover on bipartite graphs. We didn’t prove 𝑃 = 𝑁𝑃. We 
carved off part of the problem that was easy and solved that (solved 
only the “easy” instances).



Why are P and NP interesting?



Why do we care?

We’ve seen a few NP-complete problems.

But why should we care about those few?

Just memorize them and avoid them, right?

It’s more than just a few…



NP-Complete Problems

But Wait! There’s more!

A lot of problems are NP-

complete

Karp’s Theorem (1972)



NP-Complete Problems

But Wait! There’s more!

By 1979, at least 300 problems had been 
proven NP-complete.

Garey and Johnson put a list of all the NP-
complete problems they could find in this 
textbook.

Took almost 100 pages to just list them all.

No one has made a comprehensive list since.



NP-Complete Problems

But Wait! There’s more!

In December 2018, mathematicians and computer scientists put papers 
on the arXiv claiming to show (at least) 25 more problems are NP-
complete.

There are literally thousands of NP-complete problems known. 



Examples

Given a directed graph, report 

if there is a path from s to t of 

length at most 𝑘.

Short Path

Given a directed graph, report 

if there is a path from s to t of 

length at least 𝑘.

Long Path

In P NP-Complete

There are literally thousands of NP-complete problems.

And some of them look weirdly similar to problems we do know efficient 

algorithms for.



Examples

Given a weighted graph, find a 

spanning tree (a set of edges 

that connect all vertices) of 

weight at most 𝑘.

Light Spanning Tree

Given a weighted graph, find a 

tour (a walk that visits every 

vertex and returns to its start) 

of weight at most 𝑘.

Traveling Salesperson

The electric company just needs a greedy algorithm to lay its wires.

Amazon doesn’t know a way to optimally route its delivery trucks.

In P NP-Complete



Examples

Given an undirected graph, can 

the vertices be labeled red and 

blue with no edge having the 

same colors on both endpoints?

2-Coloring

Given an undirected graph, can the 

vertices be labeled red, blue, and 

green with no edge having the 

same colors on both endpoints?

3-Coloring

Just changing a number by one takes us from one of the first problems we 

solved (and one of the fastest algorithms we’ve seen) to something we 

don’t know how to solve efficiently at all.

In P NP-Complete



Dealing with NP-completeness

Thousands of times someone has wanted to find an efficient algorithm 
for a problem…

…only to realize that the problem was NP-complete.

Sooner or later it will happen to one of you.

What do you do if you think your problem is NP-complete?

We’ll discuss options next time!


