
P vs. NP and Reductions CSE 417 Winter 21

Lecture 20

Want to wrap up HW6?

Here’s what you need to know from these slides for HW6:

1. How to do a reduction (see the example/advice in slides 15-25)

2. To show a problem is NP-hard, you can reduce FROM 3-SAT, 3-
coloring, or Hamiltonian Path TO your problem. (the problems on the
homework can be done with these – definitions in these slides).

3. Writing a polynomial time algorithm for an NP-hard (or NP-
complete) problem will show 𝑃 = 𝑁𝑃.

More practice coming Friday, but these slides should be enough.

Rest of this week

What problems do we not know how to solve efficiently?

And how do we demonstrate it?

We need A LOT of definitions today.

We’ll bold new words and use them in context.

If you don’t recognize a word I say, please ask in chat right away
(someone is watching chat)

If you’re watching asynchronously, pause and back up to find the word.

There are too many words to infer from context if you missed one.

How do we know a problem is hard?

At this point in the quarter, you’ve probably at least once been banging
your head against a problem.

For so long that you began to thought “there’s no way there’s actually
an efficient algorithm for this problem.”

That wasn’t true for any of the problems we gave you so far.

But it is true for some problems. At least we think it is.

The next two lectures are: what problems do we think there aren’t
efficient algorithms for, and how do we tell?

Some definitions

A problem is a set of inputs and the correct outputs.

“Find a Minimum Spanning Tree” is a problem.
Input is a graph, output is the MST.

“Tell whether a graph is bipartite” is a problem.

Input is a graph, output is “yes” or “no”

“Find the “maximum subarray sum” is a problem.

Input is an array, output is the number that represents the largest sum of a
subarray.

Some definitions

An instance is a single input to a problem.

A single, particular graph is an instance of the MST problem

A single, particular graph is an instance of the bipartite-checking
problem.

A single, particular array is an instance of the maximum subarray sum
problem.

Decision Problems

Our goal is to divide problems into solvable/not solvable.
We’re going to talk about decision problems.

Problems that have a “yes” or “no” answer. (a correct algorithm has a
Boolean return type)

Why?

Theory reasons (ask me later).

But it’s not too bad
most problems can be rephrased as very similar decision problems.

E.g. instead of “find the shortest path from s to t” ask
Is there a path from s to t of length at most 𝑘?

“Ranking” difficulty of problems

We’ll use “reductions” to tell whether one problem is harder than
another.

In that case, we’ll say “A reduces to B”

In difficulty (for us, as algorithm designers), 𝐴 ≤ 𝐵

ANY algorithm for 𝐵 solves 𝐴. 𝐴 is no harder to solve than 𝐵.

𝐴 might be easier (maybe there’s another way to solve 𝐴 without 𝐵) or
they might be about the same (maybe 𝐵 ≤ 𝐴 too!)

Using an algorithm for Problem B to solve Problem A.

Reduction (informally)

Reductions

Even less formally

Calling a library.

If you wrote a library to solve problem 𝐵

And your algorithm for 𝐴 calls that library,

Then 𝐴 ≤ 𝐵 (𝐴 reduces to 𝐵).

Mariners cannot win the

division .

Baseball Selection (from Monday)
𝑔𝑖𝑗 Angels Rangers Mariners A’s

Angels - 5 3 4

Rangers 5 - 4 3

Mariners 3 4 - 5

A’s 4 3 5 -

Team 𝒘 𝒈 𝑷

Angels 81 12 93

Rangers 80 12 92

Mariners 70 12 82

A’s 69 12 81

Ange

ls vs.

Rang

ers

Ange

ls vs.

A’s

Rang

ers

vs.

A’s

Ange

ls

Rang

ers

A’s

3/5

4/4

3/3

1/1

2/2

7/13

∞
∞
∞

∞
∞
∞

Ange

ls vs.

Rang

ers

Ange

ls vs.

A’s

Rang

ers

vs.

A’s

Ange

ls

Rang

ers

A’s

5

4

3

1

2

13

∞
∞
∞

∞
∞
∞

Transform Input

Max-Flow Algorithm

Transform Output

More Previous Examples

On Homework 1, you reduced “stable matchings with unacceptable
pairs and unequal numbers of agents“ to “[standard] stable matching”

On Homework 4, you (might have) reduced “finding a labeling with the
minimum number of 0s on an unlabeled tree” to “2-coloring”

On Monday, we reduced “telling whether the Mariners could win the
division” to “finding a maximum flow”

A Formal Definition

We need a formal definition of a reduction.

We will say “𝐴 reduces to 𝐵 in polynomial time” (or “𝐴 is polynomial
time reducible to 𝐵” or "𝐴 reduces to 𝐵” or “𝐴 ≤ 𝐵”) if:

There is an algorithm to solve problem 𝐴, which, if given access to a
polynomial-time algorithm for problem 𝐵, runs in polynomial time
overall (including the library’s running time!!!).

Let’s Do A Reduction

4 steps for reducing (decision problem) 𝐴 to problem 𝐵.

1. Describe the reduction itself (i.e. the algorithm, with a call to a library
for problem 𝐵)

2. Make sure the running time would be polynomial (usually skip writing
out this step).

3. Argue that if the correct answer (to the instance for 𝐴) is YES, then
our algorithm answers YES.

4. Argue that if the correct answer (to the instance for 𝐴) is NO, then our
algorithm answers NO.

Reduce 2-coloring to 3-coloring

What’s 3-coloring?

Input: Undirected Graph 𝐺
Output: True if the vertices of 𝐺 can be labeled with red,green,

and blue so that no edge has both of its endpoints colored the
same color. False if it cannot.

3-coloring

Reduce 2-coloring to 3-coloring

Given a graph 𝐺, figure out whether it can be 2-colored, by using an
algorithm that figures out whether it can be 3-colored.

Usual outline:

Transform 𝐺 into an input for the 3-coloring algorithm

Run the 3-coloring algorithm

Transform the answer from the 3-coloring algorithm into the answer for
𝐺 for 2-coloring

Reduction

If we just ask the 3-coloring algorithm about 𝐺, it might use 3
colors…we can’t get it to use just 2…

…unless…

Unless we force it not to, by adding extra vertices that force the 3-
coloring algorithm to “use up” one color on the extra vertices, leaving
only two colors for the “real” vertices.

Add an extra vertex 𝑣, and attach it to everything in 𝐺.

Reduction

2ColorCheck(Graph G)

Let H be a copy of G

Add a vertex to H, attach it to all other

vertices.

Bool answer = 3ColorCheck(H)

return answer //don’t need any modification!

B

D
E

A

C
B

D
E

A

C

𝑣

B

D
E

A

C

𝑣 YES!

Yes!

Transform Input

3ColorCheck algorithm

Transform Output

Correctness?

TWO statements to prove: (“two directions”)

If the correct answer for 𝐺 is YES, then we say YES

If the correct answer for 𝐺 is NO, then we say NO

2ColorCheck(Graph G)

Let H be a copy of G

Add a vertex to H, attach it to all

other vertices.

Bool answer = 3ColorCheck(H)

return answer

Correctness?

TWO statements to prove: (“two directions”)

If the correct answer for 𝐺 is YES, then we say YES

If the correct answer for 𝐺 is NO, then we say NO

2ColorCheck(Graph G)

Let H be a copy of G

Add a vertex to H, attach it to all

other vertices.

Bool answer = 3ColorCheck(H)

return answer

If 𝐺 is 2-colorable, then 𝐻 will be 3-colorable – you can extend a 2-color labeling of 𝐺 to 3

colors on 𝐻 by making the new vertex the new color. All the edges in 𝐺 have different

colors (because we started with a 2-coloring) and any added edge has different endpoints

(because 𝑣 is a new color) so 3ColorCheck returns True and we return True!

Correctness?

TWO statements to prove: (“two directions”)

If the correct answer for 𝐺 is YES, then we say YES

If the correct answer for 𝐺 is NO, then we say NO

2ColorCheck(Graph G)

Let H be a copy of G

Add a vertex to H, attach it to all

other vertices.

Bool answer = 3ColorCheck(H)

return answer

The new vertex can be a new color!

So we can’t 2-color 𝑮. That’s going to be hard to work with.

Take the contrapositive!!

Correctness?

TWO statements to prove: (“two directions”)

If the correct answer for 𝐺 is YES, then we say YES

If the correct answer for 𝐺 is NO, then we say NO

2ColorCheck(Graph G)

Let H be a copy of G

Add a vertex to H, attach it to all

other vertices.

Bool answer = 3ColorCheck(H)

return answer

The new vertex can be a new color!

We want to show instead: If we say YES, then the correct answer is YES.

If we say YES, then 3ColorCheck(H) must have returned YES, what does a 3-coloring of H

look like? The added vertex must be a different color than all the other vertices (otherwise

it’s not a valid coloring – there’s an edge between the added vertex and all others). So

deleting the added vertex we get a 2-coloring of 𝐺. So the right answer is YES!!

Correctness

Two DIFFERENT statements

Correct Answer YES → Our algorithm says YES

If 𝐺 is 2-colorable, then 𝐻 will be 3-colorable – you can extend a 2-color labeling of 𝐺 to 3

colors on 𝐻 by making the new vertex the new color. All the edges in 𝐺 have different

colors (because we started with a 2-coloring) and any added edge has different endpoints

(because 𝑣 is a new color) so 3ColorCheck returns True and we return True!

Our algorithm says YES → Correct Answer YES

We want to show instead: If we say YES, then the correct answer is YES.

If we say YES, then 3ColorCheck(H) must have returned YES, what does a 3-coloring of H

look like? The added vertex must be a different color than all the other vertices (otherwise

it’s not a valid coloring – there’s an edge between the added vertex and all others). So

deleting the added vertex we get a 2-coloring of 𝐺. So the right answer is YES!!

Write two separate arguments

You need to show both “we won’t get any false positives” and “we won’t
get any false negatives.”

To make sure you handle both directions, I strongly recommend:

1. Always do two separate proofs (don’t try to prove both directions at
once, don’t refer back to the prior proof and say “for the same reason”).

2. Don’t use contradiction (it’s easy to start from the wrong spot and
accidentally prove the same direction twice without realizing it).

3. Follow one of the four pairs on the next slide (don’t accidentally take
a contrapositive wrong)

Argument Outlines

Most common
If the correct answer is YES, then our algorithm says YES.
And If our algorithm says YES, then the correct answer is YES

Less common but sometimes:

If our algorithm says NO, then the correct answer is NO.
And If our algorithm says YES, then the correct answer is YES

OR

If the correct answer is YES, then our algorithm says YES.

And If the correct answer is NO, then our algorithm says NO

Works, but rarely the best:
If our algorithm says NO, then the correct answer is NO.

And If the correct answer is NO, then our algorithm says NO

Back to Problem Ranking

P (can be solved efficiently)

The set of all decision problems that have an algorithm that runs in

time 𝑂 𝑛𝑘 for some constant 𝑘.

P (stands for “Polynomial”)

The decision version of all problems we’ve solved in this class are in P.

P is an example of a “complexity class”

A set of problems that can be solved under some limitations (e.g. with

some amount of memory or in some amount of time).

Problems go in complexity classes. Not algorithms.

We’re comparing problem difficulty, not algorithm quality.

NP

The set of all decision problems such that for every YES-instance, there is a

certificate for that instance which can be verified in polynomial time.

NP (stands for “nondeterministic polynomial”)

A “verifier” takes in: an instance of the NP problem, and a “proof”

And returns “true” if it received a valid proof that the instance is a YES instance, and

“false” if it did not receive a valid proof

NP problems have “verifiers” that run in polynomial time.

Do they have solvers that run in polynomial time? The definition doesn’t say.

Our second set of problems have the property that “I’ll know it when I see it”

We’re looking for something, and if someone shows it to me, we can recognize it

quickly (it just might be hard to find)

NP

The set of all decision problems such that for every YES-instance, there is a

certificate for that instance which can be verified in polynomial time.

NP (stands for “nondeterministic polynomial”)

If you have a “YES” instance, a little birdy can magically find you this certificate-

thing, and you’ll say “Oh yeah, that’s totally a yes instance!”

What if it’s a NO instance? No guarantee.

Our second set of problems have the property that “I’ll know it when I see it”

We’re looking for something, and if someone shows it to me, we can recognize it

quickly (it just might be hard to find)

NP

3-Coloring:

Can you color vertices of a graph

red, blue, and green so every

edge has differently colored

endpoints?

Light Spanning Tree:

Is there a spanning tree of graph

𝐺 of weight at most 𝑘?

Large flow:

Is there a flow from 𝑠 to 𝑡 in 𝐺 of value

at least 𝑘?

The spanning tree itself.

Verify by checking it really

connects every vertex and its

weight.

The flow itself.

Verify the capacity constraints,

conservation, and that flow value at

least k.

The coloring.

Verify by checking each edge.

The set of all decision problems such that if the answer

is YES, there is a proof of that which can be verified in

polynomial time.

NP (stands for “nondeterministic polynomial”)

Decision Problems such that:

If the answer is YES, you can prove the answer is yes by
Being given a “proof” or a “certificate”

Verifying that certificate in polynomial time.

What certificate would be convenient for short paths?

The path itself. Easy to check the path is really in the

graph and really short.

NP

The set of all decision problems such that if the answer is YES, there is a proof

of that which can be verified in polynomial time.

NP (stands for “nondeterministic polynomial”)

It’s a common misconception that NP stands for “not polynomial”

Never, ever, ever, ever say “NP” stands for “not polynomial”

Please

Every time someone says that, a theoretical computer scientist sheds a single tear

(That theoretical computer scientist is me)

Our second set of problems have the property that “I’ll know it when I see it”

We’re looking for something, and if someone shows it to me, we can recognize it

quickly (it just might be hard to find)

P vs. NP

If you’ll know it when you see it, can you also search to find it efficiently?

No one knows the answer to this question.

In fact, it’s the biggest unsolved question in Computer Science.

Are P and NP the same complexity class?

That is, can every problem that can be verified in polynomial time

also be solved in polynomial time.

P vs. NP

Some New Problems

Here are some new problems. Are they in NP?

If they’re in NP, what is the “certificate” when the answer is yes?

COMPOSITE – given an integer 𝑛 is it composite (i.e. not prime)?

MAX-FLOW – find a maximum flow in a graph.

VERTEX-COVER – given a graph 𝐺 and an integer 𝑘, does 𝐺 have a
vertex cover of size at most 𝑘?

NON-3-Color – given a graph 𝐺, is it not 3-colorable?

Some New Problems

COMPOSITE – given an integer 𝑛 is it composite (i.e. not prime)?

In 𝑁𝑃 (certificate is factors).

MAX-FLOW – find a maximum flow in a graph.

Not in 𝑁𝑃 (not a decision problem)

VERTEX-COVER – given a graph 𝐺 and an integer 𝑘, does 𝐺 have a
vertex cover of size at most 𝑘?

In 𝑁𝑃 (certificate is cover)

NON-3-Color – given a graph 𝐺, is it not 3-colorable?

Not known to be in 𝑁𝑃.

Hard Problems

Let’s say we want to figure out if every problem in NP can actually be
solved efficiently.

We might want to start with a really hard problem in NP.

What is the hardest problem in NP?

What does it mean to be a hard problem?

Reductions are a good definition:
If A reduces to B then “A ≤ B” (in terms of difficulty)

- Once you have an algorithm for B, you have one for A automatically from the reduction!

NP-hardness

An NP-hard problem is “hard enough” to design algorithms for that if
you write an efficient algorithm for it, you’ve (by accident) designed an
algorithm that works for every problem in NP.

What does it look like? Let 𝐴 be in NP, and let 𝐵 be the NP-hard
problem you solved, on an input to 𝐴, “run the reduction” and plug in
your actual algorithm for 𝐵!

The problem B is NP-hard if

for all problems A in NP, A reduces to B.

NP-hard

NP-Completeness

An NP-complete problem is a “hardest” problem in NP.

If you have an algorithm to solve an NP-complete problem, you have an
algorithm for every problem in NP.

An NP-complete problem is a universal language for encoding “I’ll know
it when I see it” problems.

The problem B is NP-complete if B is in NP

and B is NP-hard

NP-Complete

Why is being NP-hard/-complete interesting?

Let 𝐵 be an NP-hard problem. Suppose you found a polynomial time
algorithm for 𝐵. Why is that interesting?

You now have for free a polynomial time algorithm for every problem in
NP. (if 𝐴 is in NP, then 𝐴 ≤ 𝐵. So plug in your algorithm for 𝐵!)

So 𝑃 = 𝑁𝑃. (if you find a polynomial time algorithm for an NP-hard
problem).

On the other hand, if any problem in 𝑁𝑃 is not in 𝑃 (any doesn’t have a
polynomial time algorithm), then no NP-complete problem is in 𝑃.

NP-Completeness

An NP-complete problem does exist!

3-SAT is NP-complete

Cook-Levin Theorem (1971)

This sentence (and the proof of it) won Cook the Turing Award.

What’s 3-SAT?

Input: A list of Boolean variables 𝑥1, … , 𝑥𝑛

A list of constraints, all of which must be met.
Each constraint is of the form:

((xi == <T,F>) || (xj == <T,F>) || (xk == <T/F>))

ORed together, always exactly three variables, you can choose T/F
independently for each.

Output: true if there is a setting of the variables where all constraints are met, false
otherwise.

Why is it called 3-SAT? 3 because you have 3 variables per constraint
SAT is short for “satisfiability” can you satisfy all of the constraints?

More Starting Points

We have one NP-hard problem (3-SAT). It’d be nice if we had more…

I’m just going to give us more (if you’re interested in proving these NP-
complete, many are here)

3-coloring is NP-complete.

Hamiltonian Path (given a directed graph, is there a path that visits
every vertex exactly once?) is NP-complete.

http://jeffe.cs.illinois.edu/teaching/algorithms/book/12-nphard.pdf

More Reduction Facts

I have a problem

My problem 𝐶 is hard.

So hard, it’s probably NP-hard. How do I show it?

What does it mean to be NP-hard?

We need to be able to reduce any problem 𝐴 to 𝐶.

Let’s choose 𝐵 to be a known NP-hard problem. Since 𝐵 is known to be
NP-hard, 𝐴 ≤ 𝐵 for every possible 𝐴. So if we show 𝐵 ≤ 𝐶 too
then 𝐴 ≤ 𝐵 ≤ 𝐶 → 𝐴 ≤ 𝐶 so every NP problem reduces to 𝐶!

𝐴 ≤ 𝐵 ≤ 𝐶 → 𝐴 ≤ 𝐶

Is that true?

Transform

Input

Solver for 𝐴

Algorithm to solve 𝐵

Solver for 𝐵

Transform

Output

Because 𝐴 ≤ 𝐵, we have this reduction.

𝐴 ≤ 𝐵 ≤ 𝐶 → 𝐴 ≤ 𝐶

Transform Input

Solver for 𝐴

Algorithm to solve 𝐵

𝐵 ≤ 𝐶

Transform Output

Transform Input

Algorithm for 𝐶

Transform Output

𝐴 ≤ 𝐵 ≤ 𝐶 → 𝐴 ≤ 𝐶

Why does it work? Because our reductions work!

How long does it take? Still polynomial time! (Even if the input gets
bigger at each step, it still can’t get bigger than a polynomial). And we
don’t need a 𝐵 solver, the reduction is the solver! We only use a 𝐶 solver
so it’s “really” a reduction.

Transform

Input

Solver for 𝐴

Algorithm to solve 𝐵

𝐵 ≤ 𝐶

Transform

Output

Transform

Input

Algorithm for 𝐶

Transform

Output

Said Differently

𝐴 ≤ 𝐵

If I know 𝐵 is not hard [I have an algorithm for it] then 𝐴 is also not hard.

This is how we usually use reductions

𝐴 ≤ 𝐵

If I know 𝐴 is hard, then 𝐵 also must be hard.

(contrapositive of the last statement)

Want to prove your problem is hard?

To show 𝐵 is hard,

Reduce FROM the known hard problem TO the problem you care about

A reduction From an NP-hard problem 𝐴 to 𝐵, shows 𝐵 is also NP-hard.

