
Linear Programming CSE 417 Winter 21

Lecture 16

Negative Cycle

Vertex\𝒊 0 1 2 3 4 5 6

S 0 0 0 0 0

A ∞ 3 3 3 3

B ∞ 8 8 8 5

C ∞ ∞ 9 9 9

D ∞ ∞ ∞ 1 1

V ∞ ∞ ∞ 14 2

c v
a

s

db8

3
6

3 -8

4

1

5

Fill out the poll everywhere for

Activity Credit!

Go to pollev.com/cse417 and login

with your UW identity

Negative Cycles

If you have a negative length edge: Dijkstra’s might or might not give
you the right answer.

And it can’t even tell you if there’s a negative cycle (i.e. whether some of
the answers are supposed to be negative infinity)

For Bellman-Ford:

Run one extra iteration of the main loop– if any value changes, you have
a negative length cycle. Some of the values you calculated are wrong.

Run a BFS from the vertex that just changed. Anything you can find
should have −∞ as the distance. (anything else has the correct [finite]
value).

If the extra iteration doesn’t change values, no negative length cycle.

Laundry List of shortest pairs (so far)

Algorithm Running Time Special Case only Negative edges?

BFS 𝑂(𝑚 + 𝑛) ONLY unweighted

graphs

X

Simple DP 𝑂(𝑚 + 𝑛) ONLY for DAGs Yes!

Dijkstra’s 𝑂(𝑚 + 𝑛 log 𝑛) X

Bellman-Ford 𝑂(𝑚𝑛) Yes!

All Pairs Shortest Paths

All Pairs

For Dijkstra’s or Bellman-Ford we got the distances from the source to
every vertex.

What if we want the distances from every vertex to every other vertex?

Why? Most commonly pre-computation.

Imagine you’re google maps – you could run Dijkstra’s every time
anyone anywhere asks for directions…

Or store how to get between transit hubs and only use Dijkstra’s locally.

Another Recurrence

𝑑𝑖𝑠𝑡 𝑣 = ൝
0 if 𝑣 is the source

min
𝑢: 𝑢,𝑣 ∈𝐸

𝑑𝑖𝑠𝑡 𝑢 + 𝑤𝑒𝑖𝑔ℎ𝑡 𝑢, 𝑣 otherwise

Another clever way to order paths.

Put the vertices in some (arbitrary) order 1,2, … , 𝑛

Let 𝑑𝑖𝑠𝑡(𝑢, 𝑣, 𝑖) be the distance from 𝑢 to 𝑣 where the only intermediate
nodes are 1,2, … , 𝑖

𝑑𝑖𝑠𝑡(𝑢, 𝑣, 𝑖)

1 5
4

3

268

3
6

3 2

4

1

5

𝑑𝑖𝑠𝑡 4,5,0 = ∞
𝑑𝑖𝑠𝑡 4,5,1 = 11
𝑑𝑖𝑠𝑡 4,5,2 = 9
𝑑𝑖𝑠𝑡 4,5,6 = 9

Another Recurrence

Put the vertices in some (arbitrary) order 1,2, … , 𝑛

Let 𝑑𝑖𝑠𝑡(𝑢, 𝑣, 𝑖) be the distance from 𝑢 to 𝑣 where the only intermediate
nodes are 1,2, … , 𝑖

dist 𝑢, 𝑣, 𝑖 =

𝑤𝑒𝑖𝑔ℎ𝑡 𝑢, 𝑣 if 𝑖 = 0, (𝑢, 𝑣) exists
0 if 𝑖 = 0, 𝑢 = 𝑣
∞ if 𝑖 = 0, no edge (𝑢, 𝑣)

min dist 𝑢, 𝑖, 𝑖 − 1 + dist 𝑖, 𝑣, 𝑖 − 1 , dist(𝑢, 𝑣, 𝑖 − 1) otherwise

Pseudocode

“standard” form of the “Floyd-Warshall” algorithm. Similar to Bellman-Ford, you can

get rid of the last entry of the recurrence (only need 2D array, not 3D array).

dist[][] = new int[n-1][n-1]

for(int i=0; i<n; i++)

for(int j=0; j<n; j++)

dist[i][j] = edge(i,j) ? weight(i,j) : ∞

for(int i=0; i<n; i++)

dist[i][i] = 0

for every vertex 𝑟

for every vertex 𝑢

for every vertex 𝑣

if(dist[u][r] + dist[r][v] < dist[u][v])

dist[u][v]=dist[u][r] + dist[r][v]

Running Time

𝑂 𝑛3

How does that compare to Dijkstra’s?

Running Time

If you really want all-pairs…

Could run Dijkstra’s 𝑛 times…

𝑂(𝑚𝑛 + 𝑛2 log 𝑛)

If 𝑚 ≈ 𝑛2 then Floyd-Warshall matches!

Floyd-Warshall also handles negative weight edges.

If 𝑑𝑖𝑠𝑡 𝑢, 𝑢 < 0 then you’ve found a negative weight cycle.

Takeaways

Some clever dynamic programming on graphs.

Which library to use?

Need just one source?
Dijkstra’s if no negative edge weights.

Bellman-Ford if negative edges.

Need all sources?
Flord-Warshall if negative edges or 𝑚 ≈ 𝑛2

Repeated Dijkstra’s otherwise

Linear Programming

Linear Programming

Used WIDELY in business and operations research.

Excel has a linear program solver.

A very expressive language for problem-solving

Can represent a wide-variety of problems, including some we’ve already
seen.

Deep, beautiful theory…that we do not have time to cover.

Outline of rest of the week

What is a linear program?

A simple example LP

Computational Issues

An application – Vertex Cover on trees (again)

In a few weeks, we’ll return to LPs as a method of approximating NP-
hard problems.

Example Problem

You’re laying down soil for a bunch of new gardens. You got a few big
piles of soil delivered (more than enough to cover the gardens)

7

3

10

5

4

1.5

2.5

$3/unit

$2/unit

$1.5/unit

$4.5/unit

$8/unit

$4/unit

$2/unit
$1.5/unit

$4/unit

Example Problem

What variables
should we use?

7

3

10

5

4

1.5

2.5

$3/unit

$2/unit

$1.5/unit

$4.5/unit

$8/unit

$4/unit

$2/unit

$1.5/unit

$4/unit

Example Problem

What variables
should we use?

One for each edge
(how much to
move from a pile
to a garden)

E.g. 𝑥𝐴,3 is how
many units moved
from 𝐴 to 3.

7

3

10

5

4

1.5

2.5

$3/unit

$2/unit

$1.5/unit

$4.5/unit

$8/unit

$4/unit

$2/unit

$1.5/unit

$4/unit

A

B

C

1

2

3

4

𝑥𝐴,3

Example Problem

What’s the cost
(in terms of the
variables)?

Sum cost*var for
all the variables

(𝑥𝐴,1⋅ 3 + 𝑥𝐴,2 ⋅ 4 + 𝑥𝐴,3 ⋅ 1.5) +

(𝑥𝐵,1⋅ 2 + 𝑥𝐵,2 ⋅ 1.5 + 𝑥𝐵,4 ⋅ 4.5) +
(𝑥𝐶,2 ⋅ 4 + 𝑥𝐶,3 ⋅ 2 + 𝑥𝐶,4 ⋅ 8)

7

3

10

5

4

1.5

2.5

$3/unit

$2/unit

$1.5/unit

$4.5/unit

$8/unit

$4/unit

$2/unit

$1.5/unit

$4/unit

A

C

1

2

3

4

𝑥𝐴,3

B

Example Problem

What constraints
are there on the
variables?

7

3

10

5

4

1.5

2.5

$3/unit

$2/unit

$1.5/unit

$4.5/unit

$8/unit

$4/unit

$2/unit

$1.5/unit

$4/unit

A

C

1

2

3

4

𝑥𝐴,3

B

Example Problem

What constraints
are there on the
variables?

7

3

10

5

4

1.5

2.5

$3/unit

$2/unit

$1.5/unit

$4.5/unit

$8/unit

$4/unit

$2/unit

$1.5/unit

$4/unit

A

C

1

2

3

4

𝑥𝐴,3

B

Gardens each get enough soil:

𝑥𝐴,1 + 𝑥𝐵,1 ≥ 4
𝑥𝐴,2 + 𝑥𝐵,2 + 𝑥𝐶,2 ≥ 5

𝑥𝐴,3 + 𝑥𝐶,3 ≥ 1.5

𝑥𝐵,4 + 𝑥𝐶,4 ≥ 2.5

No anti-soil:

𝑥𝑖,𝑗 ≥ 0 for all 𝑖, 𝑗
Can’t overuse a pile:

𝑥𝐴,1 + 𝑥𝐴,2 + 𝑥𝐴,3 ≤ 7
𝑥𝐵,1 + 𝑥𝐵,2 + 𝑥𝐵,4 ≤ 3

𝑥𝐶,2 + 𝑥𝐶,3 + 𝑥𝐶,4 ≤ 10

Full Definition

Minimize: (𝑥𝐴,1⋅ 3 + 𝑥𝐴,2 ⋅ 4 + 𝑥𝐴,3 ⋅ 1.5) + (𝑥𝐵,1⋅ 2 + 𝑥𝐵,2 ⋅ 1.5 + 𝑥𝐵,4 ⋅ 4.5) + (𝑥𝐶,2 ⋅ 4 + 𝑥𝐶,3 ⋅ 2 + 𝑥𝐶,4 ⋅ 8)

Subject To:

𝑥𝐴,1 + 𝑥𝐵,1 ≥ 4

𝑥𝐴,2 + 𝑥𝐵,2 + 𝑥𝐶,2 ≥ 5

𝑥𝐴,3 + 𝑥𝐶,3 ≥ 1.5

𝑥𝐵,4 + 𝑥𝐶,4 ≥ 2.5

𝑥𝐴,1 + 𝑥𝐴,2 + 𝑥𝐴,3 ≤ 7

𝑥𝐵,1 + 𝑥𝐵,2 + 𝑥𝐵,4 ≤ 3

𝑥𝐶,2 + 𝑥𝐶,3 + 𝑥𝐶,4 ≤ 10

𝑥𝑖,𝑗 ≥ 0 for all 𝑖, 𝑗

A Linear Program

A linear program is defined by:

Real-valued variables

Subject to a list of linear constraints

Maximizing or minimizing a linear objective function

A linear constraint is a statement of the form: ∑𝑎𝑖𝑥𝑖 ≤ 𝑐𝑖
where 𝑎𝑖 are constants, the 𝑥𝑖 are variables and 𝑐𝑖 is a constant.

A linear objective function is a function of the form: ∑𝑏𝑖𝑥𝑖
where 𝑏𝑖 are constants and the 𝑥𝑖 are variables.

Linear constraints

Can you write each of these requirements as linear constraint(s)?

Some of these are tricks…

𝑥𝑖 times 𝑥𝑗 is at least 5

5𝑥𝑖 is equal to 1

𝑥𝑖 ≤ 5 OR 𝑥𝑖 ≥ 7

𝑥𝑖 is non-negative.

𝑥𝑖 is an integer.

Fill out the poll everywhere for

Activity Credit!

Go to pollev.com/cse417 and login

with your UW identity

Linear constraints

Can you write each of these requirements as linear constraint(s)?

Some of these are tricks…

𝑥𝑖 times 𝑥𝑗 is at least 5

5𝑥𝑖 is equal to 1

𝑥𝑖 ≤ 5 OR 𝑥𝑖 ≥ 7

𝑥𝑖 is non-negative.

𝑥𝑖 is an integer.

Fill out the poll everywhere for

Activity Credit!

Go to pollev.com/cse417 and login

with your UW identity

What are we looking for?

A solution (or point) is a setting of all the variables

A feasible point is a point that satisfies all the constraints.

An optimal point is a point that is feasible and has at least as good of an
objective value as every other feasible point.

Example Problem

7

3

10

5

4

1.5

2.5

$3/unit

$2/unit

$1.5/unit

$4.5/unit

$8/unit

$4/unit

$2/unit

$1.5/unit

$4/unit

A

C

1

2

3

4

B

Gardens each get enough soil:

𝑥𝐴,1 + 𝑥𝐵,1 ≥ 4
𝑥𝐴,2 + 𝑥𝐵,2 + 𝑥𝐶,2 ≥ 5

𝑥𝐴,3 + 𝑥𝐶,3 ≥ 1.5

𝑥𝐵,4 + 𝑥𝐶,4 ≥ 2.5

No anti-soil:

𝑥𝑖,𝑗 ≥ 0 for all 𝑖, 𝑗
Can’t overuse a pile:

𝑥𝐴,1 + 𝑥𝐴,2 + 𝑥𝐴,3 ≤ 7
𝑥𝐵,1 + 𝑥𝐵,2 + 𝑥𝐵,4 ≤ 3

𝑥𝐶,2 + 𝑥𝐶,3 + 𝑥𝐶,4 ≤ 10

5

1.5

4
2.5

A feasible point.

Objective: 55

Example Problem

7

3

10

5

4

1.5

2.5

$3/unit

$2/unit

$1.5/unit

$4.5/unit

$8/unit

$4/unit

$2/unit

$1.5/unit

$4/unit

A

C

1

2

3

4

B

Gardens each get enough soil:

𝑥𝐴,1 + 𝑥𝐵,1 ≥ 4
𝑥𝐴,2 + 𝑥𝐵,2 + 𝑥𝐶,2 ≥ 5

𝑥𝐴,3 + 𝑥𝐶,3 ≥ 1.5

𝑥𝐵,4 + 𝑥𝐶,4 ≥ 2.5

No anti-soil:

𝑥𝑖,𝑗 ≥ 0 for all 𝑖, 𝑗
Can’t overuse a pile:

𝑥𝐴,1 + 𝑥𝐴,2 + 𝑥𝐴,3 ≤ 7
𝑥𝐵,1 + 𝑥𝐵,2 + 𝑥𝐵,4 ≤ 3

𝑥𝐶,2 + 𝑥𝐶,3 + 𝑥𝐶,4 ≤ 10

2.5

A feasible point.

Objective: 44.25

0.5

4

1.5

4.5
This is an
optimal point.
There are
others!

Another Question

Change the problem

Instead of infinitely divisible dirt…

What if instead we’re moving whole unit things (the dirt is in bags we
can’t open or we’re moving bikes or plants or anything else that can’t
be split)

Well, the constraints will change (your “demand” and “supplies” will be
integers)

Non-Integrality

Some linear programs have optimal solutions that have some (or all)
variables as non-integers (even with only integers in the objective
function and constraints) .

For dirt or water or anything arbitrarily divisible, no big deal!

For cell phones or bicycles…possibly a big deal! (also possibly not!)

What do you do if you need integers?

Integer Programs are linear programs where you can mark some
variables as needing to be integers.

In practice – often still solvable (Excel also has a solver for these
problems). But no longer guaranteed to be efficient.

And “just rounding” an LP answer often gets you really close.

In theory – lots of theory has been done for when the best answer will
be an integer

But sometimes there’s just not a lot to be done…

Solving LPs

For this class, we’re only going to think about library functions to solve
linear programs (i.e. we won’t teach you how any of the algorithms
work)

The most famous is the Simplex Method – can be quite slow
(exponential time) in the worst case. But rarely hits worst-case behavior.

Very fast in practice. Idea: jump from extreme point to extreme point.

The Ellipsoid Method was the first theoretically polynomial time
algorithm 𝑂(𝑛6) where 𝑛 is the number of bit needed to describe the LP
(usually ≈ the number of constraints)

Interior Point Methods are faster theoretically, and starting to catch up
practically. 𝑂(𝑛2.373) theoretically

Extra Practice

You have 20 pounds of gold and 40 pounds of silver.

You can turn 2 pounds of silver and 3 pound of gold into a (really
heavy) necklace that can be sold for $10.

You can also turn 9 pounds of silver and 1 pound of gold into a (really
fancy) shield that can be sold for $15.

How many of each should you make to maximize your profit? (fractional
values are ok for this problem

Extra Practice

You have 20 pounds of gold and 40 pounds of silver.

You can turn 2 pounds of silver and 3 pound of gold into a (really
heavy) necklace that can be sold for $10.

You can also turn 9 pounds of silver and 1 pound of gold into a (really
fancy) shield that can be sold for $15.

How many of each should you make to maximize your profit?

Max 10𝑁 + 15𝑆

Subject to

2𝑁 + 9𝑆 ≤ 40

3𝑁 + 𝑆 ≤ 20

Plugging into an LP solver would give

𝑁 = 5.6 and 𝑆 = 3.2
(we’ll give resources for solvers next

lecture)

