
Dynamic Programming
on Trees



Longest Increasing Subsequence

Longest set of (not necessarily consecutive) elements that are increasing

5 is optimal for the array above

(indices 1,2,3,6,7; elements −6,3,6,8,10)

For simplicity – assume all array elements are distinct.

0 1 2 3 4 5 6 7

5 -6 3 6 -5 2 8 10



Longest Increasing Subsequence

What do we need to know to decide on element 𝑖?

Is it allowed? 

Will the sequence still be increasing if it’s included?

Still thinking right to left --

Two indices: index we’re looking at, and index of upper bound on 
elements (i.e. the value we need to decide if we’re still increasing).



Recurrence

Need recursive answer to the left

Currently processing 𝑖

Recursive calls to the left are needed to know optimum from 1… 𝑖

Will move 𝑖 to the right in our iterative algorithm

0 1 2 3 4 5 6 7

5 -6 3 6 -5 2 8 10

Current 𝑖Recursive call is best value in this area Not yet processed.



Longest Increasing Subsequence

𝐿𝐼𝑆 𝑖, 𝑗 is “Number of elements of the maximum increasing subsequence from 
1,… , 𝑖 where every element of the sequence is at most 𝐴[𝑗]”

Need a recurrence

𝐿𝐼𝑆 𝑖, 𝑗 =

0 if 𝑖 < 0
𝕀[𝐴 𝑖 ≤ 𝐴 𝑗 ] if 𝑖 = 0

𝐿𝐼𝑆 𝑖 − 1, 𝑗 if 𝐴 𝑖 > 𝐴 𝑗

max 1 + 𝐿𝐼𝑆 𝑖 − 1, 𝑖 , 𝐿𝐼𝑆 𝑖 − 1, 𝑗 otherwise

If 𝐴 𝑖 > 𝐴[𝑗] element 𝑖 cannot be included in an increasing subsequence where 
every element is at most 𝐴[𝑗]. So taking the largest among the first 𝑖 − 1 suffices. 

If 𝐴 𝑖 ≤ 𝐴[𝑗], then if we include 𝑖, we may include elements to the left only if they 
are less than 𝐴[𝑖] (since 𝐴 𝑖 will now be the last, and therefore largest, of elements 
1… 𝑖. If we don’t include 𝑖 we want the maximum increasing subsequence among 
1… 𝑖 − 1.



Longest Increasing Subsequence

𝐿𝐼𝑆 𝑖, 𝑗 =

0 if 𝑖 < 0
𝕀[𝐴 𝑖 ≤ 𝐴 𝑗 ] if 𝑖 = 0

𝐿𝐼𝑆 𝑖 − 1, 𝑗 if 𝐴 𝑖 > 𝐴 𝑗

max 1 + 𝐿𝐼𝑆 𝑖 − 1, 𝑖 , 𝐿𝐼𝑆 𝑖 − 1, 𝑗 otherwise

Memoization structure? 𝑛 × 𝑛 array.

Filling order?



LIS

0, 5 1, −6 2, 3 3, 6 4, −5 5, 2 6, 8 7, 10

0, 5

1, −6

2, 3

3, 6

4, −5

5, 2

6, 8

7, 10

𝑖

𝑗



LIS

0, 5 1, −6 2, 3 3, 6 4, −5 5, 2 6, 8 7, 10

0, 5 1 0 0 1 0 0 1 1

1, −6 1

2, 3

3, 6

4, −5

5, 2

6, 8

7, 10

𝑖

𝑗

𝐿𝐼𝑆 1,0 𝐴 1 < 𝐴[0] not allowed:

Take 𝐿𝐼𝑆(0,0)



LIS

0, 5 1, −6 2, 3 3, 6 4, −5 5, 2 6, 8 7, 10

0, 5 1 0 0 1 0 0 1 1

1, −6 1 1

2, 3

3, 6

4, −5

5, 2

6, 8

7, 10

𝑖

𝑗

𝐿𝐼𝑆 1,1 𝐴 1 ≥ 𝐴[1] can add, 1 + 𝐿𝐼𝑆(0,1) or 𝐿𝐼𝑆(0,1)



LIS

0, 5 1, −6 2, 3 3, 6 4, −5 5, 2 6, 8 7, 10

0, 5 1 0 0 1 0 0 1 1

1, −6 1 1 1

2, 3

3, 6

4, −5

5, 2

6, 8

7, 10

𝑖

𝑗

𝐿𝐼𝑆 1,2 𝐴 1 ≤ 𝐴[2] allowed to add:

1 + 𝐿𝐼𝑆 0,1 or 𝐿𝐼𝑆(0,2)



LIS

0, 5 1, −6 2, 3 3, 6 4, −5 5, 2 6, 8 7, 10

0, 5 1 0 0 1 0 0 1 1

1, −6 1 1 1 1 1 1 1 1

2, 3 2

3, 6

4, −5

5, 2

6, 8

7, 10

𝑖

𝑗

𝐿𝐼𝑆 2,0 𝐴 2 ≤ 𝐴 0 allowed to add

1 + 𝐿𝐼𝑆(1,2) or 𝐿𝐼𝑆(1,0)



LIS

0, 5 1, −6 2, 3 3, 6 4, −5 5, 2 6, 8 7, 10

0, 5 1 0 0 1 0 0 1 1

1, −6 1 1 1 1 1 1 1 1

2, 3 2 1 2 2 1 1 2 2

3, 6 2 1 2 3 1 1 3 3

4, −5 2 1 2 3 2 2 3 3

5, 2 3 1 3 3 2 3 3 3

6, 8 3 1 3 3 2 3 4 4

7, 10 3 1 3 3 2 3 4 5

𝑖

𝑗



pseudocode

//real code snippet that actually generated the table on the last slide

for(int j=0; j < n; j++){

vals[0][j] = (A[0] <= A[j]) ? 1 : 0;

}

for(int i = 1; i < 8; i++){

for(int j = 0; j < n; j++){

if(A[i] > A[j])

vals[i][j] = vals[i-1][j];

else{

vals[i][j] = Math.max(1+vals[i-1][i], vals[i-1][j]);

}

}

}



Longest Increasing Subsequence

𝐿𝐼𝑆 𝑖, 𝑗 =

0 if 𝑖 < 0
𝕀[𝐴 𝑖 ≤ 𝐴 𝑗 ] if 𝑖 = 0

𝐿𝐼𝑆 𝑖 − 1, 𝑗 if 𝐴 𝑖 > 𝐴 𝑗

max 1 + 𝐿𝐼𝑆 𝑖 − 1, 𝑖 , 𝐿𝐼𝑆 𝑖 − 1, 𝑗 otherwise

Memoization structure? 𝑛 × 𝑛 array.

Filling order?

Outer loop: increasing 𝑖

Inner loop: increasing 𝑗



Recurrence

Need recursive answer to the right

Currently processing 𝑖

Recursive calls to the right are needed to know optimum from 𝑖 … 𝑛

Will move 𝑖 to the left in our iterative algorithm

0 1 2 3 4 5 6 7

5 -6 3 6 -5 2 8 10
Current 𝑖 Recursive call is best value in this areaNot yet processed.



Recurrence

0 1 2 3 4 5 6 7

5 -6 3 6 -5 2 8 10
Current 𝑖 Recursive call is best value in this areaNot yet processed.

Fill out the poll everywhere for 

Activity Credit!

Go to pollev.com/cse417 and login 

with your UW identity

Try to write a different 

recurrence for longest 

increasing subsequence.



Longest Increasing Subsequence

Think left-to-right instead of right-to-left

𝐿𝐼𝑆𝐴𝑙𝑡 𝑖, 𝑗 is “Number of elements of the maximum increasing 
subsequence from 𝑖, … , 𝑛 where smallest element of the sequence is 𝐴[𝑗]”

𝐿𝐼𝑆𝐴𝑙𝑡 𝑖, 𝑗 = ቐ

0 if 𝑖 > 𝑛 𝑜𝑟 𝑗 > 𝑛

𝐿𝐼𝑆 𝑖 + 1, 𝑗 if 𝐴 𝑖 > 𝐴[𝑗]

max{1 + 𝐿𝐼𝑆 𝑖 + 1, 𝑖 , 𝐿𝐼𝑆 𝑖 + 1, 𝑗 } o/w



Longest Increasing Subsequence

𝐿𝐼𝑆𝐴𝑙𝑡 𝑖, 𝑗 is “Number of elements of the maximum increasing 
subsequence from 𝑖, … , 𝑛 where smallest element of the sequence is 𝐴[𝑗]”

𝐿𝐼𝑆𝐴𝑙𝑡 𝑖, 𝑗 = ቐ

0 if 𝑖 > 𝑛 𝑜𝑟 𝑗 > 𝑛

𝐿𝐼𝑆𝐴𝑙𝑡 𝑖 + 1, 𝑗 if 𝐴 𝑖 > 𝐴[𝑗]

max{1 + 𝐿𝐼𝑆𝐴𝑙𝑡 𝑖 + 1, 𝑖 , 𝐿𝐼𝑆𝐴𝑙𝑡 𝑖 + 1, 𝑗 } o/w

Memoization structure? 𝑛 × 𝑛 array.

Filling order? Multiple possible

Outer loop: 𝑖 from 0 to 𝑛 − 1

Inner loop: 𝑗 from 𝑛 − 1 to 𝑖



Summing Up

The two recurrences have the same idea (add/don’t add, record the end 
of the array closest to your next decision)

But thinking left-to-right vs. right-to-left 

Both end up with an 𝑛 × 𝑛 memoization structure (both of which could 
be cut down 𝑂(𝑛) memory if needed)

And 𝑂 𝑛2 running time.



But Wait! There’s more

Another recurrence at the end of these slides for more practice.

Instead of thinking “do I include this element or not?” for each element,

Ask “what’s the next element” or equivalently “what’s the longest 
subsequence starting from me”

Get a different recurrence, but not a better running time.



Takeaways

When designing a dynamic program, we sometimes need to introduce 
a second variable, that doesn’t appear in the program

Or a second recurrence that mixes with the first if other decisions affect 
what’s optimal (beyond which problem you look at)

There might be more than one program available. 



Extra Practice



Subset Sum

Given an array 𝐴[] of positive integers, and a number 𝑡 find whether 
there is a subset of 𝐴[] that sums to exactly 𝑡.

If 𝑡 = 30, answer is “yes” (for example, 5 + 5 + 2 + 8 + 10)

If 𝑡 = 100, answer is “no” (not allowed to repeat elements beyond the 
number of copies in the array, e.g. can’t say “10 copies of 10”)

0 1 2 3 4 5 6 7

5 6 3 6 5 2 8 10



Subset Sum

Write an English description of what you want to calculate

Write a recurrence

Give a sentence or two (in English) of why your recurrence should work.



Subset Sum

Write an English description of what you want to calculate

Write a recurrence

Give a sentence or two (in English) of why your recurrence should work.

Let 𝑆𝑈𝐵𝑆𝑈𝑀(𝑖, 𝑡) be true if and only if a subset of 𝐴 0 ,… , 𝐴[𝑖] can sum to 𝑡.

𝑆𝑈𝐵𝑆𝑈𝑀 𝑖, 𝑡 = ቐ
𝑇𝑟𝑢𝑒 if 𝑡 = 0
𝐹𝑎𝑙𝑠𝑒 if 𝑖 < 0 and 𝑡 ≠ 0

𝑆𝑈𝐵𝑆𝑈𝑀 𝑖 − 1, 𝑡 ||𝑆𝑈𝐵𝑆𝑈𝑀 𝑖 − 1, 𝑡 − 𝐴[𝑖] 𝑜/𝑤

Element 𝑖 is either included or it isn’t – if 𝑖 appears in a valid subset, then we need 

to have the remaining elements sum to 𝑡 − 𝐴[𝑖]. If 𝑖 doesn’t appear then the 

remaining elements will get to 𝑡. We “or” together because either could be a valid 

path to getting the right sum.



Subset Sum

What memorization structure will you use?

Write the pseudocode to fill up the structure iteratively.

A 2D Boolean array SUBSUM(𝑖, 𝑗). Array will be 𝑛 × 𝑇

SubSum(int[] A, int T)

Bool[][] SubSum = new Bool[n][T+1]

for(int j=0;j<T+1;j++){ SubSum[0][j]=False;}

SubSum[0][A[0]]=True;

for(int i=1; i<n;i++){

for(int j=0; j<T+1; j++){

if(SubSum[i-1][j]){

SubSum[i][j]=True;

SubSum[i][j+A[i]]=True;//need to catch Array index errors. Don’t do

//this in real code.

}

}

}

return SubSum[n][T-1];



Longest Increasing Subsequence, Round 3

Let’s ask “what’s the best choice for the next element” (instead of just “is
this the next element”

What’s the best choice?

It has to be greater than our current element, after that it’s the one that 
can lead to the longest subsequence.

So, (since we’re starting with our current element), the question is 

“what’s the longest increasing subsequence, starting at index 𝑖”



Longest Increasing Subsequence, Round 3

Let 𝐿𝐼𝑆𝑆𝑡𝑎𝑟𝑡(𝑖) be the length of the longest increasing subsequence 
among indices 𝑖 … 𝑛, that starts at index 𝑖.

Call an index “valid” if 𝐴 𝑗 > 𝐴[𝑖] (it’s “valid” to add 𝑗 to a sequence 
starting at 𝑖

𝐿𝐼𝑆𝑆𝑡𝑎𝑟𝑡(𝑖) = max{1, max
𝑗:𝑗 𝑖𝑠 𝑣𝑎𝑙𝑖𝑑 𝑎𝑛𝑑 𝑗>𝑖

𝐿𝐼𝑆𝑆𝑡𝑎𝑟𝑡 𝑖 if 𝑖 ≤ 𝑛} }

i.e. have a single entry (yourself) or prepend yourself to the longest 
subsequence starting after you (that you can prepend yourself to)



Longest Increasing Subsequence, Round 3

Memoization? 1D array of size 𝑛

Iteration? Outer-loop: 𝑖 decreasing

Inner-loop: calculate 𝐿𝐼𝑆𝑆𝑡𝑎𝑟𝑡(𝑖) by iterating over previous calculations.

Checking 𝑛 values for each new calculation, not 𝑂(1)

Still 𝑂 𝑛2 time.

Be careful!

Final answer is not 𝐿𝐼𝑆𝑆𝑡𝑎𝑟𝑡(𝑖).

It’s the maximum entry among 𝐿𝐼𝑆𝑆𝑡𝑎𝑟𝑡() array



DP on Trees



DP on Trees

Trees are recursive structures

A tree is a root node, with zero or more children

Each of which are roots of trees

Since DP is “smart recursion” (recursion where we save values)

Recursive functions/calculations are really common.



DP on Trees

Find the minimum vertex cover in a tree.

Give every vertex a weight, find the minimum weight vertex cover

A set 𝑆 of vertices is a vertex cover if for every edge (𝑢, 𝑣): 
𝑢 is in 𝑆, or 𝑣 is in 𝑆, (or both)

Vertex Cover

The weight of a vertex cover is just the sum of the weights of the 
vertices in the set. 

We want to find the minimum weight vertex cover.



Vertex Cover

Find the minimum vertex cover in 
a tree.

Give every vertex a weight, find 
the minimum weight vertex cover

A set 𝑆 of vertices is a vertex cover if for every 

edge (𝑢, 𝑣):  𝑢 is in 𝑆, or 𝑣 is in 𝑆, (or both)

Vertex Cover

1

10

35

8

20



Vertex Cover

Find the minimum vertex cover in 
a tree.

Give every vertex a weight, find 
the minimum weight vertex cover

A set 𝑆 of vertices is a vertex cover if for every 

edge (𝑢, 𝑣):  𝑢 is in 𝑆, or 𝑣 is in 𝑆, (or both)

Vertex Cover

1

10

35

8

20

A valid vertex cover! (just take everything)

Definitely not the minimum though.



Vertex Cover

Find the minimum vertex cover in 
a tree.

Give every vertex a weight, find 
the minimum weight vertex cover

A set 𝑆 of vertices is a vertex cover if for every 

edge (𝑢, 𝑣):  𝑢 is in 𝑆, or 𝑣 is in 𝑆, (or both)

Vertex Cover

1

10

35

8

20

A better vertex cover – weight 18



Vertex Cover

Find the minimum vertex cover in 
a tree.

Give every vertex a weight, find 
the minimum weight vertex cover

A set 𝑆 of vertices is a vertex cover if for every 

edge (𝑢, 𝑣):  𝑢 is in 𝑆, or 𝑣 is in 𝑆, (or both)

Vertex Cover

1

10

35

8

20

The minimum vertex cover: weight 17



Vertex Cover

Notice, the minimum weight
vertex cover might have both 
endpoints of some edges

Even though only one of 1, 8 is 
required on the edge between 
them, they are both required for 
other edges.

Also an indication that greedy 
probably won’t work!

A set 𝑆 of vertices is a vertex cover if for every 

edge (𝑢, 𝑣):  𝑢 is in 𝑆, or 𝑣 is in 𝑆, (or both)

Vertex Cover

1

10

35

8

20



Vertex Cover – Recursively 

Let’s try to write a recursive algorithm first.

What information do we need to decide if we include 𝑢?

If we don’t include 𝑢 then to be a valid vertex cover we need…

If we do include 𝑢 then to be a valid vertex cover we need…



Vertex Cover – Recursively 

Let’s try to write a recursive algorithm first.

What information do we need to decide if we include 𝑢?

If we don’t include 𝑢 then to be a valid vertex cover we need…

to include all of 𝑢′𝑠 children, and vertex covers for each subtree

If we do include 𝑢 then to be a valid vertex cover we need…

just vertex covers in each subtree (whether children included or not)



Recurrence

Let 𝑂𝑃𝑇(𝑣) be the weight of a minimum weight vertex cover for the 
subtree rooted at 𝑣.

Write a recurrence for 𝑂𝑃𝑇()

Then figure out how to calculate it



Recurrence

𝑂𝑃𝑇(𝑣) – the weight of the minimum weight vertex cover for the tree 
rooted at 𝑣 (whether or not 𝑣 is included).

𝐼𝑁𝐶𝐿𝑈𝐷𝐸(𝑣) – the weight of the minimum weight vertex cover for the 
tree rooted at 𝑣 where 𝑣 is included in the vertex cover.

𝑂𝑃𝑇 𝑣 = ቊmin{σ𝑢:𝑢 is a child of 𝑣 𝐼𝑁𝐶𝐿𝑈𝐷𝐸 𝑢 , 𝑤𝑒𝑖𝑔ℎ𝑡 𝑣 + σ𝑢:𝑢 is a child of 𝑣𝑂𝑃𝑇(𝑢)} if 𝑣 is not a leaf

0 if 𝑣 is a leaf

𝐼𝑁𝐶𝐿𝑈𝐷𝐸 𝑣 = 𝑤𝑒𝑖𝑔ℎ𝑡 𝑣 + σ𝑢:𝑢 is a child of 𝑣𝑂𝑃𝑇(𝑢)



Vertex Cover Dynamic Program

What memoization structure should we use?

What code should we write?

What’s the running time?



Vertex Cover Dynamic Program

What memoization structure should we use?

the tree itself!

What code should we write?

What’s the running time?



Vertex Cover

What order do we do the 
calculation? 1

10

35

8

20



Vertex Cover Dynamic Program

What memoization structure should we use?

the tree itself!

What code should we write?

A post-order traversal (make recursive calls, then look up values in 
children to do calculations)

What’s the running time?

Θ(𝑛)



DP Context



DP Design Notes

We haven’t done a single proof for DP…

We won’t ask you to do one.

DP proofs are almost always just “the code does the recurrence” 

But that just moves the correctness question – why is the recurrence 
correct?

And the proof of the recurrence being correct is almost always “I 
included all the cases” 

I’d rather you focus on checking it than trying to explain it.



DP history

So…why is it called “dynamic programming?”

“programming” is an old-timey meaning of the word.

It means “scheduling”

Like a conference has a “program” of who speaks where when.
Or a television executive decides on the nightly programming (what 
show airs when).



DP history

So…dynamic?

The phrase “dynamic programming” was popularized by Richard 
Bellman (we’ll see one of his algorithms on Monday)

He was a researcher, funded by the U.S. military….

But the Secretary of Defense [as Bellman tells it] hated research. And 
hated math even more.

So Bellman needed a description of his research that everyone 



DP history

Dynamic

Is actually an accurate adjective – what we think is the best option 
(include/exclude) can change over time.

Even better

“It’s impossible to use the word ‘dynamic’ in a pejorative sense”

“It was something not even a Congressman could object to.”



Next week

Dynamic Programming on General graphs

Linear Programming


