
Divide & Conquer CSE 417 Winter 21

Lecture 9



Announcements

Wednesday:

First ~15 minutes of lecture Wednesday will be a discussion with Ken 
Yasuhara from UW Engineering Teaching & Learning

Goal is to get me rapid feedback on some of the early changes in the 
course (what’s working, what isn’t, what would help). 

If you’re participating asynchronously, we’ll get your feedback through a 
survey afterward. 



Divide & Conquer

Algorithm Design Paradigm

1. Divide instance into subparts.

2. Solve the parts recursively.

3. Conquer by combining the answers 



Merge Sort

CSE 373 19 SU - ROBBIE WEBER 4

https://www.youtube.com/watch?v=XaqR3G_NVoo

0 1 2 3 4 5 6 7 8 9

8 2 91 22 57 1 10 6 7 4

Divide

0 1 2 3 4

8 2 91 22 57

5 6 7 8 9

1 10 6 7 4

0 1 2 3 4

2 8 22 57 91

5 6 7 8 9

1 4 6 7 10

0 1 2 3 4 5 6 7 8 9

1 2 4 6 7 8 10 22 57 91

Combine

Sort the pieces through the magic of recursionmagic

https://www.youtube.com/watch?v=XaqR3G_NVoo


Merge Sort

CSE 373 19 SU - ROBBIE WEBER 5

mergeSort(input) {

if (input.length == 1)

return

else

smallerHalf = mergeSort(new [0, ..., mid])

largerHalf = mergeSort(new [mid + 1, ...])

return merge(smallerHalf, largerHalf)

}

0 1 2 3 4

8 2 57 91 22

0 1

8 2

0 1 2

57 91 22

0

8

0

2

0

57

0 1

91 22

0

91

0

22

0 1

22 91

0 1 2

22 57 91

0 1

2 8

0 1 2 3 4

2 8 22 57 91

Worst case runtime?

Best case runtime?

Average runtime?

Stable?

In-place?

1 if n<= 1

2T(n/2) + n otherwise

Yes

No

T(n) = = 𝑂(𝑛 log 𝑛)

Same

Same



Counting Inversions

Given an array, 𝐴, determine how “unsorted” it is, by counting number 
of inversions:

Intuitively, how many adjacent swaps to fully sort.

Why? Tell “how different” two lists are (e.g. tell if someone’s opinion is 
an outlier, or if two people have similar preferences)

0 1 2 3 4

8 2 91 22 57

0,1 , 2,3 , and (2,4)
are inversions

Inversion: pair 𝑖, 𝑗 such that 𝑖 < 𝑗 but 𝐴 𝑖 > 𝐴[𝑗]



Counting Inversions

Given an array, 𝐴, determine how “unsorted” it is:

Find the number of pairs 𝑖, 𝑗 such that 𝑖 < 𝑗 but 𝐴 𝑖 > 𝐴[𝑗]
0 1 2 3 4

8 2 91 22 57

0 1 2 3 4

2 8 22 57 91

Visualization: overlaps 

correspond to inversions 

(needed swaps)



Counting Inversions

What’s the first idea that comes to mind (don’t try to divide and
conquer yet).

Check every pair 𝑖, 𝑗

Θ(𝑛2) time.

Goal: do better than Θ(𝑛2)



Divide & Conquer Inversions

1. Divide instance into subparts.

2. Solve the parts recursively.

3. Conquer by combining the answers 

1. Split array in half (indices 0,
𝑛

2
− 1 and 

𝑛

2
, 𝑛 − 1 )

2. Solve the parts recursively (gives all inversions in each half)

3. Combine the answers

So…do we just add?



Conquer

Can’t just add!

0 1 2 3 4

8 2 91 22 57

0 1 2

8 2 91
3 4

22 57



Conquer

Kinds of 𝑖, 𝑗

Both, 𝑖, 𝑗 in left side – counted by recursive call

Both 𝑖, 𝑗 in right side – counted by other recursive call

𝑖 in left side, 𝑗 in right side – TODO 

𝑖 in right side, 𝑗 in left side – Can’t have 𝑖 < 𝑗 no inversions here.

Need to handle TODO. Then add together.



Inversions across the middle

Fix some 𝑖 on the left side. How many 𝑗 on the right side form 
inversions?

So how do we find all the “crossing inversions” 
𝑛

2
elements, each checking 

𝑛

2
others, so that’s time…𝑂(𝑛2) to merge

0 1 2 3 4

8 2 91 22 57



Running Time

𝑇 𝑛 = ቐ
2𝑇

𝑛

2
+ Θ 𝑛2 if 𝑛 ≥ 2

Θ 1 othwerwise

Master Theorem says:



Master Theorem

𝑇 𝑛 = ቐ
𝑑 if 𝑛 is at most some constant

𝑎𝑇
𝑛

𝑏
+ 𝑓 𝑛 otherwise

Given a recurrence of the following form, where 𝑎, 𝑏, 𝑐, and 𝑑 are constants:

Where 𝑓 𝑛 is Θ 𝑛𝑐

𝑇 𝑛 ∈ Θ 𝑛𝑐log𝑏 𝑎 < 𝑐

log𝑏 𝑎 = 𝑐 𝑇 𝑛 ∈ Θ 𝑛𝑐 log 𝑛

log𝑏 𝑎 > 𝑐 𝑇 𝑛 ∈ Θ 𝑛log𝑏 𝑎

If

If

If

then

then

then

𝑇 𝑛 = ቐ
2𝑇

𝑛

2
+ Θ 𝑛2 if 𝑛 ≥ 2

Θ 1 othwerwise



Running Time

𝑇 𝑛 = ቐ
2𝑇

𝑛

2
+ 𝑂 𝑛2 if 𝑛 ≥ 2

𝑂 1 othwerwise

Master Theorem says:

log2 2 = 1 < 2

So 𝑂(𝑛2)

Not actually better than brute force.



Divide & Conquer Smarter

In fact, all that divide & conquer did was rearrange the work we were 
doing anyway.

We’re still explicitly checking for every 𝑖, 𝑗 “is 𝑖, 𝑗 an inversion?”

The trick to making divide & conquer efficient is to make it so that 
conquering is easier than just solving the whole problem.



Counting Across the Middle

Fix some 𝑖 on the left side. How many 𝑗 on the right side form 
inversions?

What would we do if the right hand side were sorted?



Counting the inversions

0 1 2 3 4

8 2 91 22 57

5 6 7 8 9

1 4 6 7 10

Inversions involving index 0: (0,5)… (0,8)

Inversions involving index 1: (1,5)

Inversions involving index 4: [none]



Counting Across the Middle

Fix some 𝑖 on the left side. How many 𝑗 on the right side form 
inversions?

What would we do if the right hand side were sorted?

Binary search! 

Time? O(log 𝑛) per element on the left side…so 𝑂(𝑛 log 𝑛) to combine



Analyze, round 2.

𝑇 𝑛 = ቐ
2𝑇

𝑛

2
+ 𝑂 𝑛 log 𝑛 if 𝑛 ≥ 2

𝑂 1 othwerwise

Master Theorem says:

log2 2 = 1 ? 𝑢𝑚𝑚𝑚



Master Theorem

𝑇 𝑛 = ቐ
𝑑 if 𝑛 is at most some constant

𝑎𝑇
𝑛

𝑏
+ 𝑓 𝑛 otherwise

Given a recurrence of the following form, where 𝑎, 𝑏, 𝑐, and 𝑑 are constants:

Where 𝑓 𝑛 is Θ 𝑛𝑐

𝑇 𝑛 ∈ Θ 𝑛𝑐log𝑏 𝑎 < 𝑐

log𝑏 𝑎 = 𝑐 𝑇 𝑛 ∈ Θ 𝑛𝑐 log 𝑛

log𝑏 𝑎 > 𝑐 𝑇 𝑛 ∈ Θ 𝑛log𝑏 𝑎

If

If

If

then

then

then

𝑇 𝑛 = ቐ
2𝑇

𝑛

2
+ 𝑂 𝑛 log𝑛 if 𝑛 ≥ 2

𝑂 1 othwerwise



Pause

Lets get some intuition 

𝑂(𝑛 log 𝑛) is closest to which of these:

𝑂(𝑛)

𝑂 𝑛1.1

𝑂 𝑛 𝑛

𝑂(𝑛2)



Pause

Lets get some intuition 

𝑂(𝑛 log 𝑛) is closest to which of these:

𝑂(𝑛)

𝑂 𝑛1.1

𝑂 𝑛 𝑛

𝑂(𝑛2)

So we’d expect to get an answer 

between Θ(𝑛 log 𝑛) and Θ(𝑛1.1 log 𝑛), 
but closer to Θ(𝑛 log 𝑛)



Master Theorem, v2

Θ(𝑛 log2 𝑛)

i.e. Θ(𝑛 ⋅ log 𝑛 ⋅ log 𝑛 )

https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms)



Counting Across the Middle

So sort the array first! As a preprocessing step

Then count the inversions. 

What’s the problem?

Ok, sort as part of the process.

When you sort, the inversions disappear



Almost there…

int CountInversions(A, int start, int stop)

inversions = 0

if(start >= stop)

return 0

int midpoint = (stop-start)/2 + start

inversions += CountInversions(A, start, midpoint)

inversions += CountInversions(A, midpoint+1, end)

sort(A, midpoint+1, end)

for(int i=start; i <= midpoint; i++)

int k = binarySearch(A, midpoint+1, end, i)

inversions += k-(midpoint+1)+1

return inversions



Just a liiiiiittle better

Sort the left subarray too!

Can that help us?

If 𝑖, 𝑗 is an inversion then 𝑖 + 1, 𝑗 and 𝑖 + 2, 𝑗, and, … 
𝑛

2
− 1, 𝑗 are also 

inversions. 

Don’t have to binary search every time, can just “march down” lists.



Sorted example

0,5 is an inversion. 1,5 , 2,5 , 3,5 , (4,5) are too!

Know everything we need to about index 5.

(0,6) is not an inversion. 0,7 … , (0,9) aren’t either.

Know everything we need to about index 0.

(1,6) is an inversion 2,6 , 2,7 , (2,8) are too!

Know everything we need to about index 6. …

5 6 7 8 9

1 4 6 7 10

0 1 2 3 4

2 8 22 57 91



In general

In general:

If (𝑖, 𝑗) is an inversion, have (
𝑛

2
− 𝑖) inversions. Increase 𝑗.

If (𝑖, 𝑗) is not an inversion, increase 𝑖.

Time to iterate?…Θ(𝑛)

5 6 7 8 9

1 4 6 7 10

0 1 2 3 4

2 8 22 57 91



Does this…look familiar

Having an arrow to a spot in two arrays, moving whichever is on the 
smaller value forward…

That’s how merge from mergesort works!

If we sort (by mergesort) and count inversions as we’re merging we save 
that log factor.

Running time Θ(n log n)



Another divide and conquer

Maximum subarray sum

Given: an array of integers (positive and negative), find the indices that 
give the maximum contiguous subarray sum.

0 1 2 3 4 5 6 7

-3 2 4 -1 3 -10 6 -4

Sum: 8



Maximum Subarray Sum

Brute force: How many subarrays to check? Θ(𝑛2)

How long does it take to check a subarray?

If you keep track of partial sums, the overall algorithm can take Θ(𝑛2)
time.

Can we do better?



Maximum Contiguous Subarray

1. Divide instance into subparts.

2. Solve the parts recursively.

3. Conquer by combining the answers 

1. Split the array in half

2. Solve the parts recursively.

3. Just take the max?



Conquer

Subarrays that cross have to be handled

Do we have to check all pairs 𝑖, 𝑗?

0 1 2 3 4 5 6 7

-3 2 4 -1 3 -10 6 -4



Conquer

If the optimal subarray:

is only on the left – handled by the first recursive call.

is only on the right – handled by the second recursive call.

crosses the middle – TODO

Do we have to check all pairs 𝑖, 𝑗?

0 1 2 3 4 5 6 7

-3 2 4 -1 3 -10 6 -4



Crossing Subarrays

Do we have to check all pairs 𝑖, 𝑗?

Sum is 𝐴
𝑛

2
− 1 + 𝐴

𝑛

2
− 2 +⋯+ 𝐴 𝑖 + 𝐴

𝑛

2
+ 𝐴

𝑛

2
+ 1 +⋯𝐴[𝑗]

𝑖, 𝑗 affect the sum. But they don’t affect each other.

Calculate them separately!

0 1 2 3 4 5 6 7

-3 2 4 -1 3 -10 6 -4



Crossing Subarrays

Do we have to check all pairs 𝑖, 𝑗?

Best 𝑖? Iterate with 𝑖 decreasing, find the maximum. 𝑖 = 1 has sum 5.

Time to find 𝑖? Θ(𝑛)

0 1 2 3 4 5 6 7

-3 2 4 -1 3 -10 6 -4



Crossing Subarrays

Do we have to check all pairs 𝑖, 𝑗?

Best 𝑗? Iterate with 𝑗 increasing, find the maximum. j = 4 has sum 3.

Time to find 𝑗? Θ(𝑛)

0 1 2 3 4 5 6 7

-3 2 4 -1 3 -10 6 -4



Finishing the recursive call

Overall: 

Compare sums from recursive calls and 𝐴 𝑖 + ⋯+ 𝐴[𝑗], take max.

0 1 2 3 4 5 6 7

-3 2 4 -1 3 -10 6 -4



Running Time

What does the conquer step do?

Two separate Θ(𝑛) loops, then a constant time comparison.

So

𝑇 𝑛 = ቐ
2𝑇

𝑛

2
+ Θ 𝑛 if 𝑛 ≥ 2

Θ 1 otherwise

Master Theorem says Θ(𝑛 log 𝑛)


