
More Greedy Algorithms CSE 417 Winter 21

Lecture 8



Trip Planning

Your goal is to follow a pre-set route from New York to Los Angeles.

You can drive 500 miles in a day, but you need to make sure you can 
stop at a hotel every night (all possibilities premarked on your map)

You’d like to stop for the fewest number of nights possible – what 
should you plan?

Greedy: Go as far as you can every night. 

Is greedy optimal?

Or is there some reason to “stop short” that might let you go further the 
next night?



Trip Planning

Greedy works!

Because “greedy stays ahead” 

Let 𝑔𝑖 be the hotel you stop at on night 𝑖 in the greedy algorithm.

Let 𝑂𝑃𝑇𝑖 be the hotel you stop at in the optimal plan (the fewest nights 
plan). 

Claim: 𝑔𝑖 is always at least as far along as 𝑂𝑃𝑇𝑖.

Base Case: 𝑖 = 1, OPT and the algorithm choose between the same set 
of hotels (all at most 500 miles from the start), 𝑔𝑖 is the farthest of those 
by the algorithm definition, so 𝑔𝑖 is at least as far as 𝑂𝑃𝑇𝑖 .



Trip Planning

Inductive Hypothesis: Suppose through the first 𝑘 hotels, 𝑔𝑘 is farther 
along than 𝑂𝑃𝑇𝑘.

Inductive Step: 

When we select 𝑔𝑘+1, we can choose any hotel within 500 miles of 𝑔𝑘, 
since 𝑔𝑘 is at least as far along as 𝑂𝑃𝑇𝑘 everything less than 500 miles 
after 𝑂𝑃𝑇𝑘 is also less than 500 miles after 𝑔𝑘 . Since we take the farthest 
along hotel, 𝑔𝑘+1 is at least as far along as 𝑂𝑃𝑇𝑘+1.

Wrapping up: Since 𝑔𝑛 is greater than or equal to 𝑂𝑃𝑇𝑛 for every 𝑛, The 
last 𝑔𝑖 must be at least as far along as 𝑂𝑃𝑇𝑖, so we don’t need an extra 
night compared to 𝑂𝑃𝑇 – the greedy algorithm is optimal!



Wrapping MSTs



Other MST Algorithms

You know Prim’s and Kruskal’s already.

Option 3: Reverse-Delete algorithm

Start from the full graph

Sort edges in decreasing order, delete an edge if it won’t disconnect the 
graph. 

NOT practical (Prim’s and Kruskal’s are at least as fast, and conceptually 
easier), but fun fact!



Other MST Algorithms

How would you prove Reverse-Delete works?

Structural Proof?

Exchange Argument?

Greedy Stays Ahead?

Fill out the poll everywhere for 

Activity Credit!

Go to pollev.com/cse417 and login 

with your UW identity



Other MST Algorithms

Option 4: Boruvka’s Algorithm (also called Sollin’s Algorithm)

Start with empty graph, use BFS to find lightest edge leaving each 
component. 

Add ALL such edges found (they’re all safe edges)

Recurse until the graph is all one component (i.e. a tree)

Consider it for your practical applications! 

It naturally parallelizes (unlike the other MST algorithms), 

Has same worst case running time as Prim’s/Kruskal’s!



More Greedy



Change-Making

Suppose you need to “make change” with the fewest number of coins 
possible. 

Greedy algorithm:

Is the greedy algorithm optimal if you have 

1 cent coins, 10 cent coins, and 15 cent coins? 

What about for U.S. coinage (1, 5, 10, 25, 50, 100)

Take the biggest coin less than the change remaining.



Change-Making

Suppose you need to “make change” with the fewest number of coins 
possible.

Is the greedy algorithm optimal if you have 

1 cent coins, 10 cent coins, and 15 cent coins? 

What about for U.S. coinage (1, 5, 10, 25, 50, 100)

Take the biggest coin less than the change remaining.

Introduce yourselves!

If you can turn your video on, please do.

If you can’t, please unmute and say hi.

If you can’t do either, say “hi” in chat.

Choose someone to share screen, 

showing this pdf.

Fill out the poll everywhere for 

Activity Credit!

Go to pollev.com/cse417 and login 

with your UW identity



Interval Scheduling

You have a single processor, and a set of jobs with fixed start and end 
times.

Your goal is to maximize the number of jobs you can process.

I.e. choose the maximum number of non-overlapping intervals.



Interval Scheduling

You have a single processor, and a set of jobs with fixed start and end 
times.

Your goal is to maximize the number of jobs you can process.

I.e. choose the maximum number of non-overlapping intervals.

3 non-overlapping 

intervals



Interval Scheduling

You have a single processor, and a set of jobs with fixed start and end 
times.

Your goal is to maximize the number of jobs you can process.

I.e. choose the maximum number of non-overlapping intervals.

3 other non-

overlapping intervals



Interval Scheduling

You have a single processor, and a set of jobs with fixed start and end 
times.

Your goal is to maximize the number of jobs you can process.

I.e. choose the maximum number of non-overlapping intervals.

OPT is 3 – there is no way to have 4 non-overlapping intervals; 

both the red and purple solutions are equally good.



Greedy Ideas

To specify a greedy algorithm, we need to:

Order the elements (intervals)

Choose a rule for deciding whether to add.
Rule: Add interval as long as it doesn’t overlap with those we’ve already 
selected. 

What ordering should we use?

Think of at least two orderings you think might work.



Greedy Algorithm

Some possibilities

Earliest end time (add if no overlap with previous selected)

Latest end time 

Earliest start time

Latest start time

Shortest interval 

Fewest overlaps (with remaining intervals)



Greedy

That list slide is the real difficulty with greedy algorithms.

All of those look at least somewhat plausible at first glance.

With MSTs that was fine – those ideas all worked! 

It’s not fine here.

They don’t all work.

As a first step – try to find counter-examples to narrow down



Greedy Algorithm

Earliest end time

Latest end time 

Earliest start time

Latest start time

Shortest interval 

Fewest overlaps (with remaining intervals)



Take Earliest Start Time – Counter Example



Take Earliest Start Time – Counter Example

Taking the one with the earliest start time doesn’t give us the best 
answer. 

Algorithm finds

Optimum



Shortest Interval



Shortest Interval

Taking the shortest interval first doesn’t give us the best answer

Algorithm finds

Optimum



Greedy Algorithm

Earliest end time

Latest end time 

Earliest start time

Latest start time

Shortest interval 

Fewest overlaps (with remaining intervals)



Earliest End Time

Intuition: If 𝑢 has the earliest end time, and 𝑢 overlaps with 𝑣 and 𝑤
then 𝑣 and 𝑤 also overlap. 

Why?

If 𝑢 and 𝑣 overlap, then both are “active” at the instant before 𝑢 ends 
(otherwise 𝑣 would have an earlier end time).

Otherwise 𝑣 would have an earlier end time than 𝑢! By the same 
reasoning, 𝑤 is also “active” the instant before 𝑢 ends. So 𝑣 and 𝑤 also 
overlap with each other.



Earliest End Time

Can you prove it correct? 

Do you want to use

Structural Result

Exchange Argument

Greedy Stays Ahead



Exchange Argument

Let 𝐴 = 𝑎1, 𝑎2, … , 𝑎𝑘 be the set of intervals selected by the greedy 
algorithm, ordered by endtime

OPT= 𝑜1, 𝑜2, … , 𝑜ℓ be the maximum set of intervals, ordered by endtime.

Our goal will be to “exchange” to show 𝐴 has at least as many elements 
as OPT. 

Let 𝑎𝑖 , 𝑜𝑖 be the first two elements where 𝑎𝑖 and 𝑜𝑖 aren’t the same. 
Since 𝑎𝑖−1 and 𝑜𝑖−1 are the same, neither 𝑎𝑖 nor 𝑜𝑖 overlaps with any of 
𝑜1, … , 𝑜𝑖−1. And by the greedy choice, 𝑎𝑖 ends no later than 𝑜𝑖 so 
𝑎𝑖 doesn’t overlap with 𝑜𝑖+1. So we can exchange 𝑎𝑖 into OPT, replacing 
𝑜𝑖 and still have OPT be valid. 



Exchange Argument

Repeat this argument until we have changed OPT into 𝐴.

Can OPT have more elements than 𝐴? 

No! After repeating the argument, we could change every element of 
OPT to 𝐴. If OPT had another element, it wouldn’t overlap with anything 
in OPT, and therefore can’t overlap with anything in 𝐴 after all the 
swaps. But then the greedy algorithm would have added it to 𝐴.

So 𝐴 has the same number of elements as OPT does, and we really 
found an optimal 



Greedy Stays Ahead

Let 𝐴 = 𝑎1, 𝑎2, … , 𝑎𝑘 be the set of intervals selected by the greedy 
algorithm, ordered by endtime

OPT= 𝑜1, 𝑜2, … , 𝑜ℓ be the maximum set of intervals, ordered by endtime.

Our goal will be to show that for every 𝑖, 𝑎𝑖 ends no later than 𝑜𝑖.

Proof by induction:

Base case: 𝑎1 has the earliest end time of any interval (since there are no 
other intervals in the set when we consider 𝑎1 we always include it), thus 
𝑎1 ends no later then 𝑜1.



Greedy Stays Ahead

Inductive Hypothesis: Suppose for all 𝑖 ≤ 𝑘, 𝑎𝑖 ends no later than 𝑜𝑖.

IS: Since (by IH) 𝑎𝑘 ends no later than 𝑜𝑘 , greedy has access to 
everything that doesn’t overlap with 𝑎𝑘 . Since 𝑎𝑘 ends no later than 𝑜𝑘, 
that includes 𝑜𝑘+1. Since we take the first one that doesn’t overlap, 𝑎𝑘+1
will also end before 𝑜𝑘+1.

Therefore 𝑎𝑘+1 ends no later than 𝑜𝑘+1

Wrapping Up: Since every 𝑎𝑖 ends no later than 𝑜𝑖, the last interval 
greedy selects (𝑎𝑛) is no later than 𝑜𝑛. There cannot be an 𝑜𝑛+1, as if it 
didn’t overlap with 𝑜𝑛 it also wouldn’t overlap with 𝑎𝑛 and would have 
been added by greedy. 



Greedy Algorithm

Earliest end time

Latest end time 

Earliest start time

Latest start time

Shortest interval 

Fewest overlaps (with remaining intervals)



Other Greedy Algorithms

It turns out latest start time and fewest overlaps also work.

Latest start time is actually the same as earliest end time (imagine 
“reflecting” all the jobs along the time axis – the one with the earliest 
end time ends up having the last start time). 

What about fewest overlaps? 

Easiest proof Robbie knows observes that fewest overlaps means you 
have the earliest finish time (among a certain subset of the intervals)



Greedy Algorithm

Earliest end time

Latest end time 

Earliest start time

Latest start time

Shortest interval 

Fewest overlaps (with remaining intervals)



Summary

Greedy algorithms

You’ll probably have 2 (or 3…or 6) ideas for greedy algorithms. Check 
some simple examples before you implement! 
Greedy algorithms rarely work.

When they work AND you can prove they work, they’re great!

Proofs are often tricky

Structural results are the hardest to come up with, but the most
versatile.

Greedy stays ahead usually use induction

Exchange start with the first difference between greedy and optimal.


