
DFS, Graph Modeling CSE 417 Winter 21

Lecture 6

Edge Classification (for DFS on directed
graphs)
Edge type Definition When is (𝒖, 𝒗) that edge type?

Tree Edges forming the DFS tree (or forest). 𝑣 was not seen before we processed 𝑢, 𝑣 .

Forward From ancestor to descendant in tree. 𝑢 and 𝑣 have been seen, and

u.start < v.start < v.end < u.end

Back From descendant to ancestor in tree. 𝑢 and 𝑣 have been seen, and

v.start < u.start < u.end < v.end

Cross Edges going between vertices without an

ancestor relationship.

𝑢 and 𝑣 have not been seen, and

v.start < v.end < u.start < u.end

The third column doesn’t look like it encompasses all possibilities.

It does – the fact that we’re using a stack limits the possibilities:

e.g. u.start < v.start < u.end < v.end is impossible.

And the rules of the algorithm eliminate some other possibilities.

Try it Yourselves!

DFS(u)

Mark u as “seen”

u.start = counter++

For each edge (u,v) //leaving u

If v is not “seen”

DFS(v)

End If

End For

u.end = counter++

DFSWrapper(G)

counter = 0

For each vertex u of G

If u is not “seen”

DFS(u)

End If

End For

A

D

C

EF

B

1 12

2 11

3 10

4 5

6 9

7 8

cross

Actually Using DFS

Here’s a claim that will let us use DFS for something!

DFS run on a directed graph has a back edge if and only if

it has a cycle.

Back Edge Characterization

Forward Direction

If DFS on a graph has a back edge then it has a cycle.

Suppose the back edge is (𝑢, 𝑣).

A back edge is going from a descendant to an ancestor.

So we can go from 𝑣 back to 𝑢 on the tree edges.

That sounds like a cycle!

Backward direction

This direction is trickier.
Here’s a “proof” – it has the right intuition, but (at least) one bug.

Suppose G has a cycle 𝑣0, 𝑣1, … , 𝑣𝑘.

Without loss of generality, let 𝑣0 be the first node on the cycle DFS marks
as seen.

For each 𝑖 there is an edge from 𝑣𝑖 to 𝑣𝑖+1.

We discovered 𝑣0 first, so those will be tree edges.

When we get to 𝑣𝑘 , it has an edge to 𝑣0 but 𝑣0 is seen, so it must be a
back edge.

Talk to your neighbors to find a bug –then try to fix it.

Fixing the Backward Direction

We might not just walk along the cycle in order. Are we going to visit 𝑣𝑘
“in time” or might 𝑣𝑘 , 𝑣0 be a cross edge?

DFS(v) finds exactly the

(unseen) vertices reachable

from 𝑣.

DFS discovery

Fixing the Backward Direction

We might not just walk along the cycle in order. Are we going to visit 𝑣𝑘
“in time” or might 𝑣𝑘 , 𝑣0 be a cross edge?

Suppose G has a cycle 𝑣0, 𝑣1, … , 𝑣𝑘.

Without loss of generality, let 𝑣0 be the first node on the cycle DFS
marks as seen.

For each 𝑖 there is an edge from 𝑣𝑖 to 𝑣𝑖+1.

We discovered 𝑣0 first, so those will be tree edges.

When we get to 𝑣𝑘 , it has an edge to 𝑣0 but 𝑣0 is seen, so it must be a
back edge.

𝑣𝑘 is reachable from 𝑣0 so we must reach 𝑣𝑘 before 𝑣0 comes off the stack.

Summary

A directed graph has a back edge if and only if it has a

cycle.

Back Edge Characterization

DFS(v) finds exactly the (unseen) vertices reachable from 𝑣.

DFS discovery

BFS/DFS caveats and cautions

Edge classifications are different for directed graphs and undirected
graphs.

DFS in undirected graphs don’t have cross edges.

BFS in directed graphs can have edges skipping levels (only as back
edges, skipping levels up though!)

Summary – Graph Search Applications

BFS

Shortest Paths (unweighted)
graphs)

DFS

Cycle detection (directed graphs)

Topological sort

Strongly connected components

Cut edges (on homework)

EITHER

2-coloring

Connected components (undirected)

Usually use BFS –

easier to understand.

Designing New Algorithms on Directed
Graphs

In 373 you learned some applications of depth first search:

Finding Strongly Connected Components

Finding a Topological Sort of a DAG

We’ll briefly review what these do, but won’t go into details.

Your turn: Find Strongly Connected
Components

D

C F

B EA K

J

{A}, {B}, {C,D,E,F}, {J,K}

A subgraph C such that every pair of vertices in C is connected via

some path in both directions, and there is no other vertex which is

connected to every vertex of C in both directions.

Strongly Connected Component

Problem 1: Ordering Dependencies

Given a directed graph G, where we have an edge from u to v if u must
happen before v.

We can only do things one at a time, can we find an order that respects
dependencies?

Given: a directed graph G

Find: an ordering of the vertices so all edges go from left to right.

Topological Sort (aka Topological Ordering)

Uses:

Compiling multiple files

Graduating

Topological Ordering

A course prerequisite chart and a possible topological ordering.

CSE 373 19 SP - KASEY CHAMPION 16

Math 126

CSE 142

CSE 143

CSE 373

CSE 374

CSE 417

Math 126 CSE 142 CSE 143 CSE 373 CSE 374 CSE 417

How do these work?

A couple of different ways to use DFS to find strongly connected
components.

Wikipedia has the details.

High level: need to keep track of “highest point” in DFS tree you can reach back up
to. Similar idea on undirected graphs on HW2.

Topological sort

You saw an algorithm in 373

Important thing: runs in Θ(𝑚 + 𝑛) time.

Designing new algorithms

When you need to design a new algorithm on graphs, whatever you do
is probably going to take at least Ω(𝑚 + 𝑛) time.

So you can run any 𝑂(𝑚 + 𝑛) algorithm as “preprocessing”

Finding connected components (undirected graphs)

Finding SCCs (directed graphs)

Do a topological sort (DAGs)

Designing New Algorithms

Finding SCCs and topological sort go well together:

From a graph 𝐺 you can define the “meta-graph” 𝐺𝑆𝐶𝐶

(aka “condensation”, aka “graph of SCCs”)

𝐺𝑆𝐶𝐶 has a vertex for every SCC of 𝐺

There’s an edge from 𝑢 to 𝑣 in 𝐺𝑆𝐶𝐶 if and only if there’s an edge in 𝐺
from a vertex in 𝑢 to a vertex in 𝑣.

Why Find SCCs?

Let’s build a new graph out of them! Call it 𝐺𝑆𝐶𝐶

Have a vertex for each of the strongly connected components

Add an edge from component 1 to component 2 if there is an edge from a vertex
inside 1 to one inside 2.

D

C F

B EA K

J

1

3 4

2

Designing New Graph Algorithms

Not a common task – most graph problems have been asked before.

When you need to do it, Robbie recommends:

Start with a simpler case (topo-sorted DAG, or [strongly] connected graph).

One of the problems on HW2 does this – it walks you through the process of
designing an algorithm by:

1. Figuring out what you’d do if the graph is strongly connected

2. Figuring out what you’d do if the graph is a topologically ordered DAG

3. Stitching together those two ideas (using 𝐺𝑆𝐶𝐶).

Graph Modeling

But…Most of the time you don’t need a new graph algorithm.

What you need is to figure out what graph to make and which graph
algorithm to run.

“Graph modeling”

Going from word problem to graph algorithm.

Often finding a clever way to turn your requirements into graph
features.

Mix of “standard bag of tricks” and new creativity.

Graph Modeling Process

1. What are your fundamental objects?
Those will probably become your vertices.

2. How are those objects related?
Represent those relationships with edges.

3. How is what I’m looking for encoded in the graph?
Do I need a path from s to t? The shortest path from s to t? A minimum spanning
tree? Something else?

4. Do I know how to find what I’m looking for?
Then run that algorithm/combination of algorithms

Otherwise go back to step 1 and try again.

Scenario #1

What are the vertices?

What are the edges?

What are we looking for?

What do we run?

You’ve made a new social networking app,
Convrs. Users on Convrs can have “asymmetric”
following (I can follow you, without you following
me). You decide to allow people to form multi-
user direct messages, but only if people are
probably in similar social circles (to avoid
spamming).

You’ll allow a messaging channel to form only if
for every pair of users a,b in the channel: a must
follow b or follow someone who follows b or
follow someone who follows someone who
follows b, or …
And the same for b to a.

You’d like to be able to quickly check for any new
proposed channel whether it meets this
condition.

Scenario #1
You’ve made a new social networking app,
Convrs. Users on Convrs can have “asymmetric”
following (I can follow you, without you following
me). You decide to allow people to form multi-
user direct messages, but only if people are
probably in similar social circles (to avoid
spamming).

You’ll allow a messaging channel to form only if
for every pair of users a,b in the channel: a must
follow b or follow someone who follows b or
follow someone who follows someone who
follows b, or …
And the same for b to a.

You’d like to be able to quickly check for any new
proposed channel whether it meets this
condition.

What are the vertices?

What are the edges?

What are we looking for?

What do we run?

Users

Directed – from 𝑢 to 𝑣 if

𝑢 follows 𝑣

If everyone in the channel is

in the same SCC.

Find SCCs, to test a new channel,

make sure all are in same component.

Scenario #2

Sports fans often use the “transitive
law” to predict sports outcomes -- .
In general, if you think A is better
than B, and B is also better than C,
then you expect that A is better
than C.

Teams don’t all play each other –
from data of games that have been
played, determine if the “transitive
law” is realistic, or misleading about
at least one outcome.

What are the vertices?

What are the edges?

What are we looking for?

What do we run?

Scenario #2

Sports fans often use the “transitive
law” to predict sports outcomes -- .
In general, if you think A is better
than B, and B is also better than C,
then you expect that A is better
than C.

Teams don’t all play each other –
from data of games that have been
played, determine if the “transitive
law” is realistic, or misleading about
at least one outcome.

What are the vertices?

What are the edges?

What are we looking for?

What do we run?

Teams

Directed – Edge from

𝑢 to 𝑣 if 𝑢 beat 𝑣.

A cycle would say it’s not realistic.

OR a topological sort would say it is.

Cycle-detection DFS.

a topological sort algorithm (with

error detection)

Scenario #3
You are at Splash Mountain. Your best friend is at
Space Mountain. You have to tell each other about
your experiences in person as soon as possible.
Where do you meet and how quickly can you get
there?

What are the vertices?
Rides

What are the edges?
Walkways with how long it would take to walk

What are we looking for?
- The “midpoint”

What do we run?
- Run Dijkstra’s from Splash Mountain, store distances

- Run Dijkstra’s from Space Mountain, store distances

- Iterate over vertices, for each vertex remember max of two

- Iterate over vertices, find minimum of remembered numbers

Castle

Flag

Pole

Dumbo

It’s a

small

world

Matter-

horn

Space

Mtn

Star

Tours

Jungle

Cruise

Indiana

Jones

Splash

Mtn

Thunder

Mtn

0

1

2

3

4

5

6 7

8

9

10

11

5

17

13

1210

1

9

6

4

16

7

8

3

2

15

14

0

15

14

29

33

32

19

17

20 37

36

1

36

29

22

19 15

9

17

3

1

2

8

0

Scenario #4

CSE 373 SP 18 - KASEY CHAMPION 29

You’re a Disneyland employee, working the front of the Splash Mountain line. Suddenly,
the crowd-control gates fall over and the line degrades into an unordered mass of people.

Sometimes you can tell who was in line before who; for other groups you aren’t quite sure.
You need to restore the line, while ensuring if you knew A came before B before the
incident, they will still be in the right order afterward.

What are the vertices?
People

What are the edges?
Edges are directed, have an edge from X to Y if you know X came before Y.

What are we looking for?
- A total ordering consistent with all the ordering we do know.

What do we run?
- Topological Sort!

