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ℎ1𝑟1

𝑟2 ℎ2

ℎ1 , ℎ2 𝑟2 , 𝑟1

ℎ2 , ℎ1 𝑟1 , 𝑟2

Initially all 𝑟 in 𝑅 and ℎ in 𝐻 are free

While there is a free 𝑟
Let ℎ be highest on 𝑟’s list that 𝑟 has not proposed to

if ℎ is free, then match (𝑟, ℎ)
else //ℎ is not free

suppose (𝑟′, ℎ) are matched

if ℎ prefers 𝑟 to r′
unmatch (𝑟’, ℎ)
match (𝑟, ℎ)

What happens if you run Gale 

Shapley on the example above. 

Does it matter which of the “free 

riders” goes first?

What happens if the horses propose 

to the riders?



Announcements

If the news was overwhelming this week, you’re not alone on that.

You can watch asynchronously if you need to.

This week’s canvas quizzes delayed to Wednesday.

Starting (sometime) next week, we’ll use preassigned breakouts (so you 
don’t have to introduce yourself every time). Announcement coming on 
Ed today. Please follow directions even if you’re usually asynchrounous.



Goals for Today

Does it matter which free rider we choose?

Does it matter what order 

How many stable matchings can there be?

What can one do in practice?

At the end: Introduction to induction.



Multiple Stable Matchings

Suppose we take our algorithm and let the horses do the 
“proposing” instead.

We got a different answer…

What does that mean?

ℎ1𝑟1

𝑟2 ℎ2

ℎ1 , ℎ2 𝑟2 , 𝑟1

ℎ2 , ℎ1 𝑟1 , 𝑟2



Proposer-Optimality

Some agents might have more than one possible match in a stable 
matching. Call these people the “feasible partners.”

When there’s more than one stable matching, there is a tremendous 
benefit to being the proposing side.

Every member of the proposing side is matched to 
their favorite of their feasible partners.

Proposer-Optimality



Proposer-Optimality

Let’s prove it – again by contradiction

Suppose some rider is not matched to their favorite feasible partner.
Then some 𝑟 must have been the first to be rejected by their favorite feasible 
partner, ℎ. (Observation A)
And there is an 𝑟′ that ℎ (temporarily) matched to causing that rejection.

Let 𝑀′ be a stable matching where 𝑟, ℎ are matched. The rider 𝑟′ is matched 
to some ℎ′. 

What can we say about 𝑟′? They had never been rejected by a feasible partner. 
So they prefer ℎ to ℎ′. 

And ℎ prefers 𝑟′ to 𝑟 (by the run of the algorithm). 

But then (𝑟′, ℎ) are a blocking pair in 𝑀′!

Every member of the proposing side is matched to 
the favorite of their feasible partners.

Proposer-Optimality ℎ′𝑟

𝑟′ ℎ

ℎ′𝑟

𝑟′ ℎ



Implications of Proposer Optimality

We didn’t specify which rider proposes when more than one is free
Proposer-optimality says it doesn’t matter! You always get the proposer-optimal 
matching.

So what happens to the other side?

Every member of the proposing side is matched to 
their favorite of their feasible partners.

Proposer-Optimality



Chooser-Pessimality

A similar argument (it’s a good exercise!), will show that choosing 
among proposals is a much worse position to be in.

Every member of the choosing (non-proposing) side is 
matched to their least favorite of their feasible partners.

Chooser-Pessimality



Some More Context and Takeaways

Stable Matching has another common name: “Stable Marriage”

The metaphor used there is “men” and “women” getting married.

When choosing or analyzing an algorithm think about everyone 
involved, not just the people you’re optimizing for; you might not be 
able to have it all.

Stable Matchings always exist, and we can find them efficiently.

The GS Algorithm gives proposers their best possible partner
At the expense of those receiving proposals getting their worst possible.



Practical Concerns



How Many Stable Matchings?

We’ve seen there is always at least one stable matching.

We’ve seen sometimes there are at least two stable matchings.

Can there be only one?

Can there be more than two (i.e. can there be stable matchings not 
found by Gale-Shapley?)

Why do we care? GS advantages one side or the other. If other 
matchings are available, maybe those are “more balanced”



More than two?

ℎ1𝑟1

𝑟2 ℎ2

ℎ1 , ℎ2, ℎ3 𝑟2 , 𝑟1, 𝑟3

ℎ2 , ℎ1, ℎ3 𝑟3 , 𝑟1, 𝑟2

ℎ3𝑟3ℎ3 , ℎ2, ℎ1 𝑟1 , 𝑟3, 𝑟2



What about when 𝑛 increases?

Ok, ok, is 3 the maximum? 

What we really care about is:

As 𝑛 increases, can the number of stable matchings grow quickly 
enough that it’s not possible to examine them all?

How do we justify that. I can’t just give you one instance…

I need to give you a family of instances. 

Instructions so that you can build an instance for larger and larger 𝑛.



What about when 𝑛 increases?

Generalize the idea from the last slide.

𝑟1 has list: ℎ1, ℎ2, ℎ3, … , ℎ𝑛

𝑟𝑖 has their list start ℎ𝑖 , ℎ𝑖−𝑖 , ℎ𝑖+1 (for 𝑖 > 1)

ℎ𝑖 has its list start: 𝑟𝑖+1, 𝑟1, 𝑟𝑖 (for 𝑖 < 𝑛)

ℎ𝑛 has its list start: 𝑟1, rn



What about when 𝑛 increases?
ℎ1𝑟1

𝑟2 ℎ2

ℎ1 , ℎ2, ℎ3, ℎ4, … , ℎ𝑛 𝑟2 , 𝑟1, 𝑟3

ℎ2 , ℎ1, ℎ3 𝑟3 , 𝑟1, 𝑟2

ℎ𝑛𝑟𝑛ℎ𝑛 , ℎ𝑛−1 𝑟1 , 𝑟𝑛

𝑟2 ℎ3ℎ3 , ℎ2, ℎ4 𝑟4 , 𝑟1, 𝑟3

𝑟𝑖 ℎ𝑖ℎ𝑖 , ℎ𝑖−1, ℎ𝑖+1 𝑟𝑖+1 , 𝑟1, 𝑟𝑖

Rider optimal: match 𝑟𝑖 to  ℎ𝑖

Switch (𝑟1, ℎ2) (𝑟2, ℎ1)
Still stable -- ℎ’s that changed got 

happier, no new blocking pairs 

created.

For some 𝑗: Match (𝑟1, ℎ𝑗)

Up to 𝑗: (𝑟𝑖 , ℎ𝑖−1)
After 𝑗: (𝑟𝑖 , ℎ𝑖)
Still stable (for same reason)

At the end:

Match (𝑟𝑖 , ℎ𝑖−1) and (𝑟1, ℎ𝑛)
Still stable (for same reason)

…

…

… …



How high can that go?

One of your homework problem asks you to show that the number of 
stable matchings can grow exponentially.

i.e. there are stable matching instances with 𝑛 riders and 𝑛 horses with 
𝑐𝑛 stable matchings (where 𝑐 > 1). 

The exact maximum is unknown! 



When there’s more than two…

Can we find them all?

Well…we could just check all 𝑛! possible matchings to see if each is 
stable. That’s only 𝑂(𝑛! ⋅ 𝑛2) time. 

That’s really slow. 

There’s a better way!

There’s an algorithm that runs in 𝑂(𝑛2 + 𝑛𝑆) time to print all 𝑆 possible 
stable matchings.

Beyond the scope of this course, 



If we can find them all…

…could we just find the “median” one?

It’s not clear what “median” means.

There is a reasonable definition (ask Robbie after)…but it’s NP-hard to 
find the “median” matching

What does that mean: set a reasonable expectation – you shouldn’t 
expect to always find the median stable matching (but you can 
sometimes!)



Can there be only one?

If Gale-Shapley returns the same matching regardless of which side 
proposes, then there must be only one stable matching. 

Proof: 

For every agent, when it proposes, it gets its favorite feasible partner 
(proposer-optimality) and when it chooses, it gets its least favorite 
feasible partner (chooser-pessimality). So if that agent is the same, it 
only has one feasible partner. If every agent has only one possible 
feasible partner, then there is only one possible stable matching.

Can we make an example like that? Yes! 𝑟𝑖 and ℎ𝑖 have each other as 
first choices for all 𝑖.



So what should you do?

Choosing a GS run could give a significant advantage to one side, but…

Sometimes the advantage is minimal. 

The NRMP changed from a hospital-proposing based algorithm to a 
resident-proposing based algorithm. Only about 0.1% of residents got a 
different assignment when the algorithm changed.

In practice, there might be few enough stable matchings to just see 
them all and pick one (on average, there are only O(𝑛 log 𝑛) stable 
matchings).



Induction



Induction

We proved that Gale-Shapley produces a matching with no blocking 
pairs with proof by contradiction.

We could also have used proof by induction. 

Induction is useful when you have a claim that is true “step-by-step” 

Our big goal is “no blocking pairs at all” – step-by-step, we can say:

After 𝑖 iterations of the while-loop of GS, there are no blocking pairs 
among (tentatively) matched agents. 

i.e. no pairs where both agents are tentatively matched.



Induction

Show a claim step-by-step.

“Base Case” – show the calculation “starts” in the right place (usually 
that variables store the right values, or some property is true about what 
we’ve calculated so far).

If the variables are right before step 𝑘, then they are right after step 𝑘.

“inductive hypothesis” – if our property is true before step 𝑘

“inductive step” – then it is still true after step 𝑘.



Prove a loop does the right thing.

Before the loop starts, everything 
is right.

Each time through, if the variables 
start with the right information, 
then they are updated correctly.

Therefore, after we exit the loop, 
we have the right answer.

Prove recursive code works

The base case of the recursion 
produces the right value.

If the recursive calls we make 
produce the right value, then we 
return the right value.

Therefore, the first recursive call 
also produces the right answer.

Induction



Induction in 5 easy(?) steps

1. Define 𝑃(𝑛). State that your proof is by induction on 𝑛.

2. Base Case(s): Show the smallest value 𝑃(𝑏𝑚𝑖𝑛) is true.

3. Inductive Hypothesis: Suppose 𝑃 𝑏𝑚𝑖𝑛 ∧ 𝑃 𝑏𝑚𝑖𝑛 + 1 ∧ ⋯∧ 𝑃(𝑘) for an 
arbitrary 𝑘 ≥ 𝑏𝑚𝑎𝑥 . (The smallest value of 𝑘 assumes all bases cases, but 
nothing else)

4. Inductive Step: Show 𝑃 𝑘 + 1 (i.e. get [P(b𝑚𝑖𝑛 ∧ ⋯∧ 𝑃 𝑘 ] → 𝑃(𝑘 + 1))

5. Conclude by saying 𝑃 𝑛 is true for all 𝑛 ≥ 𝑏𝑚𝑖𝑛 by the principle of 
induction. 



Things to check for

𝑃(𝑛) should:
1. be Boolean valued (i.e. output “true” or “false)

2. Take in an integer.

3. If you knew 𝑃(𝑛) holds for all 𝑛, you should know your main claim.

If your inductive step goes back exactly 𝑠 steps every time, then you need 𝑠
base cases. (good rule of thumb: if you’re analyzing recursive code with 
multiple base cases, your induction proof needs multiple base cases)

Be careful with your IH! You want to suppose everything from the base 
case(s) up to some fixed value 𝑘.



Claim: Gale-Shapley produces a matching 
without blocking pairs

𝑃(𝑛) after 𝑛 iterations of the while-loop of GS, there are no blocking 
pairs among (tentatively) matched agents. 

Base Case: After 0 iterations no one is matched, so there are no 
blocking pairs among tentatively matched agents (because there aren’t 
any).

IH: Suppose that after each of the first 𝑘 iterations of the while-loop of 
GS, there are no blocking pairs among (tentatively) matched agents.

IS: Want to show after the 𝑘 + 1 st iteration, there are no blocking pairs 
among tentatively matched agents. 

…



Claim: GS produces a matching without blocking pairs

IH: Suppose that after each of the first 𝑘 iterations of the while-loop of GS, 
there are no blocking pairs among (tentatively) matched agents.

IS: Want to show after the 𝑘 + 1 st iteration, there are no blocking pairs 
among tentatively matched agents. 

Proposal Rejected 

OR Proposal accepted because ℎ preferred 𝑟 to its previous tentative match

OR Proposal accepted because first one ℎ received

…



Claim: GS produces a matching without blocking pairs

IH: Suppose that after each of the first 𝑘 iterations of the while-loop of GS, 
there are no blocking pairs among (tentatively) matched agents.

IS: Want to show after the 𝑘 + 1 st iteration, there are no blocking pairs 
among tentatively matched agents. 

During the 𝑘 + 1 st iteration, we have one proposal from a rider 𝑟. 
If 𝑟 is rejected, the matching doesn’t change, so there are no blocking pairs 
by inductive hypothesis. 

OR proposal accepted because ℎ preferred 𝑟 to previous tentative match.

OR proposal accepted because first one ℎ received

…



Claim: GS produces a matching without blocking pairs

IH: Suppose that after each of the first 𝑘 iterations of the while-loop of GS, 
there are no blocking pairs among (tentatively) matched agents.

IS: Want to show after the 𝑘 + 1 st iteration, there are no blocking pairs 
among tentatively matched agents. 

During the 𝑘 + 1 st iteration, we have one proposal from a rider 𝑟. 
If 𝑟 is rejected, the matching doesn’t change, so there are no blocking pairs 
by inductive hypothesis. 

Otherwise, 𝑟 is tentatively matched to ℎ. We claim 𝑟 doesn’t form a blocking 
pair: since it proposed to ℎ, any horse it prefers to ℎ already rejected it, so by 
Observation C, they prefer their partner to 𝑟. And ℎ won’t form a blocking 
pair either –
if it was matched, by IH it preferred its former match to any other tentative 
match. And it just decided it prefers 𝑟.  

OR proposal accepted because first one ℎ received

…



Claim: GS produces a matching without blocking pairs

IH: Suppose that after each of the first 𝑘 iterations of the while-loop of GS, 
there are no blocking pairs among (tentatively) matched agents.

IS: Want to show after the 𝑘 + 1 st iteration, there are no blocking pairs 
among tentatively matched agents. 

During the 𝑘 + 1 st iteration, we have one proposal from a rider 𝑟. 
If 𝑟 is rejected, the matching doesn’t change, so there are no blocking pairs 
by inductive hypothesis. 

Otherwise, 𝑟 is tentatively matched to ℎ. We claim 𝑟 doesn’t form a blocking 
pair: since it proposed to ℎ, any horse it prefers to ℎ already rejected it, so by 
Observation C, they prefer their partner to 𝑟. And ℎ won’t form a blocking 
pair either –
if it was matched, by IH it preferred its former match to any other tentative 
match. And it just decided it prefers 𝑟.  
If it wasn’t matched, it hadn’t received a proposal from any matched rider, the 
matched riders all prefer their current matches, so it can’t form a blocking 
pair with them.



Wrapping up the proof

By the principle of induction, 𝑃(𝑖) holds for all 𝑖.

In particular, after the last iteration of the while-loop of GS, there are no 
blocking pairs among (tentatively) matched agents. 

Since we also produce a perfect matching, there are no blocking pairs at 
all! So we produce a stable matching.



Want more induction practice?

Lots of practice materials on the webpage. Look at the resources tab.


