
Stable Matchings



Given two sets R = 𝑟1, … , 𝑟𝑛 , 𝐻 = {ℎ1, … , ℎ𝑛}

each agent ranks every agent in the other set.

Goal: Match each agent to exactly one agent in the other set, respecting 
their preferences.

How do we “respect preferences”?

Avoid blocking pairs: unmatched pairs (𝑟, ℎ) where 𝑟 prefers ℎ to their 
match, and ℎ prefers 𝑟 to its match.

ℎ𝑟

𝑟′ ℎ′

ℎ , ℎ’ 𝑟, 𝑟’

Stable Matching Problem



Stable Matching, More Formally
Perfect matching:

•Each rider is paired with exactly one horse.

•Each horse is paired with exactly one rider.

Stability: no ability to exchange

an unmatched pair 𝑟-ℎ is blocking if they both prefer each other to 
current matches.

Stable matching: perfect matching with no blocking pairs.

Given: the preference lists of 𝑛 riders and 𝑛 horses. 
Find: a stable matching.

Stable Matching Problem



Questions

Does a stable matching always exist?

Can we find a stable matching efficiently?

We’ll answer both of those questions in the next few lectures.

Let’s start with the second one.



Idea for an Algorithm

Key idea

Unmatched riders “propose” to the highest horse on their 
preference list that they have not already proposed to.

Send in a rider to walk up to their favorite horse.

Everyone in front of a different horse? Done!

If more than one rider is at the same horse, let the horse 
decide its favorite.

Rejected riders go back outside.

Repeat until you have a perfect matching.



Gale-Shapley Algorithm

Initially all 𝑟 in 𝑅 and ℎ in 𝐻 are free

While there is a free 𝑟
Let ℎ be highest on 𝑟’s list that 𝑟 has not proposed to

if ℎ is free, then match (𝑟, ℎ)
else //ℎ is not free

suppose (𝑟′, ℎ) are matched

if ℎ prefers 𝑟 to r′
unmatch (𝑟’, ℎ)
match (𝑟, ℎ)



Algorithm Example

ℎ1𝑟1

𝑟2 ℎ2

ℎ1 , ℎ2, ℎ3 𝑟2 , 𝑟3, 𝑟1

ℎ1 , ℎ3, ℎ2 𝑟3 , 𝑟1, 𝑟2

ℎ3𝑟3ℎ1 , ℎ2, ℎ3 𝑟3 , 𝑟1, 𝑟2

Proposals: 𝑟1, 𝑟2, 𝑟1, 𝑟3, 𝑟3, 𝑟1



Does this algorithm work?

Does it run in a reasonable amount of time?

Is the result correct (i.e. a stable matching)?

Begin by identifying invariants and measures of progress

Observation A: r’s proposals get worse for them.

Observation B: Once h is matched, h stays matched.

Observation C: h’s partners get better.

How do we justify these? A one-sentence explanation would suffice for each of these on 

the homework.

How did we know these were the right observations? Practice. And editing – we 

wouldn’t have found these the first time, but after reading through early proof attempts.



Claim 1: If 𝑟 proposed to the last horse on 
their list, then all the horses are matched.

Hint: 𝑟 must have been rejected a lot – what does that mean?

Try to prove this claim, i.e. clearly explain why it is true. You might want some of 

these observations:

Observation A: r’s proposals get worse for them.

Observation B: Once h is matched, h stays matched.

Observation C: h’s partners get better.



Claim 1: If 𝑟 proposed to the last horse on 
their list, then all the horses are matched.

Hint: 𝑟 must have been rejected a lot – what does that mean?

By Observation B, once a horse receives any proposal it is not free for 
the rest of the algorithm.

So every horse on 𝑟’s list must be matched.

And every horse is on 𝑟’s list!



Claim 2: The algorithm stops after 𝑂 𝑛2

proposals.

Hint: When do we exit the loop? (Use claim 1).

If every horse is matched, every rider must be matched too.
-Because each horse is matched to exactly one rider and there are 
an equal number of riders and horses.

It takes at most 𝑂 𝑛2 proposals to get to the end of some 
rider’s list.
Claim 2 now follows from Claim 1.

Question 1 answered: The algorithm halts (quickly)!

Now question 2: does it produce a stable matching?



Wrapping up the running time

We need 𝑂(𝑛2) proposals. But how many steps does the full algorithm 
execute?

Depends on how we implement it…we’re going to need some data 
structures.



Gale-Shapley Algorithm

Initially all 𝑟 in 𝑅 and ℎ in 𝐻 are free

While there is a free 𝑟
Let ℎ be highest on 𝑟’s list that 𝑟 has not proposed to

if ℎ is free, then match (𝑟, ℎ)
else //ℎ is not free suppose (𝑟′, ℎ) are matched

if ℎ prefers 𝑟 to r′
unmatch (𝑟’, ℎ)
match (𝑟, ℎ)

Are each of these operations really 𝑂(1)?
Assume that you get two int[][] with the preferences.



Gale-Shapley Algorithm

Initially all 𝑟 in 𝑅 and ℎ in 𝐻 are free

While there is a free 𝑟
Let ℎ be highest on 𝑟’s list that 𝑟 has not proposed to

if ℎ is free, then match (𝑟, ℎ)
else //ℎ is not free suppose (𝑟′, ℎ) are matched

if ℎ prefers 𝑟 to r′
unmatch (𝑟’, ℎ)
match (𝑟, ℎ)

Are each of these operations really 𝑂(1)?
Assume that you get two int[][] with the preferences.

Need to maintain free 𝑟. What can insert and remove in 𝑂 1 time?

Each 𝑟 should know where 

it is on its list.
Maintain partial matching

Maintain partial matching

Given two riders, which horse is preferred?



What data structures should you use?
Initially all 𝑟 in 𝑅 and ℎ in 𝐻 are free

While there is a free 𝑟
Let ℎ be highest on 𝑟’s list that 𝑟 has not proposed to

if ℎ is free, then match (𝑟, ℎ)
else //ℎ is not free suppose (𝑟′, ℎ) are matched

if ℎ prefers 𝑟 to r′
unmatch (𝑟’, ℎ)
match (𝑟, ℎ)

Need to maintain free 𝑟. What can insert and remove in 𝑂 1 time?

Each 𝑟 should know where 

it is on its list.
Maintain partial matching

Maintain partial matching

Given two riders, which horse is preferred?

Introduce yourselves!

If you can turn your video on, please do.

If you can’t, please unmute and say hi.

If you can’t do either, say “hi” in chat.

Choose someone to share screen, 

showing this pdf.

Fill out the poll everywhere for 

Activity Credit!

Go to pollev.com/cse417 and login 

with your UW identity



What data structures?

Need to maintain free 𝑟. What can insert and remove in 𝑂 1 time?

Each 𝑟 should know where 

it is on its list.

Maintain partial matching

Given two riders, which is preferred?

Queue, stack, or list (inserting at end) all would be fine. 

Two arrays (index i has number for partner of agent i.

int for each rider (likely store in an array)

Lookup in int[][] takes…𝑂(𝑛) in the worst case. Uh-oh. 

Better idea: build “inverse” arrays (given rider, what is their rank for horse?).

One time cost of 𝑂(𝑛2) time and space to build, but comparisons 𝑂(1). 



What data structures?

Need to maintain free 𝑟. What can insert and remove in 𝑂 1 time?

Each 𝑟 should know where 

it is on its list.

Maintain partial matching

Given two riders, which is preferred?

Queue, stack, or list (inserting at end) all would be fine. 

Two arrays (index i has number for partner of agent i.

int for each rider (likely store in an array)

Lookup in int[][] takes…𝑂(𝑛) in the worst case. Uh-oh. 

Better idea: build “inverse” arrays (given rider, what is their rank for horse?).

One time cost of 𝑂(𝑛2) time and space to build, but comparisons 𝑂(1). 

These aren’t the only options –

you might decide on an object-

based approach (can meet 

same time bounds up to 

constant factors)

But tl;dr: You really can get 

𝑂(𝑛2) time!



Analyzing Gale-Shapley

Efficient?

Halts in 𝑂(𝑛2) steps. ✔

Works?

Need a matching that’s:

• Perfect 

• Has no blocking pairs



Claim 3: The algorithm identifies a perfect 
matching.

Why?

We know the algorithm halts. Which means when it halts every rider is 
matched.

But we have the same number of horses and riders, and we matched 
them one-to-one. 

Hence, the algorithm finds a perfect matching.



Claim 4: The matching has no blocking pairs.

We want to prove a negative

there is no blocking pair.

That’s a good sign for proof by contradiction.

What’s proof by contradiction?

I want to know 𝑝 is true.

Imagine, 𝑝 were false. Study the world that would result.

Realize that world makes no sense (something false is true)

But the real world does make sense! So 𝑝 must be true.



Claim 4: The matching has no blocking pairs.

We want to prove a negative

there is no blocking pair.

That’s a good sign for proof by contradiction.

Suppose (for contradiction) that (𝑟1, ℎ1) and (𝑟2, ℎ2) are matched, 
but 

𝑟1prefers ℎ2 to ℎ1 and

ℎ2 prefers 𝑟1 to 𝑟2
ℎ1𝑟1

𝑟2 ℎ2

…ℎ2 …ℎ1…

…𝑟1 … 𝑟2…



Claim 4: The matching has no blocking pairs.

How did 𝑟1 end up matched to ℎ1?

He must have proposed to and been rejected by ℎ2 (Observation A).

Why did ℎ2 reject 𝑟1? It got a better offer from some r′.

If ℎ2 ever changed matches after that, the match was only better for it, 
(Observation C) so it must prefer 𝑟2 (its final match) to 𝑟1.

A contradiction!

ℎ1𝑟1

𝑟2 ℎ2

…ℎ2 …ℎ1…

…𝑟1 … 𝑟2…



Result

Simple, 𝑂(𝑛2) algorithm to compute a stable matching

Corollary

A stable matching always exists.

The corollary isn’t obvious!

The “stable roommates problem” doesn’t always have a solution:
2𝑛 people, rank the other 2𝑛 − 1

Goal is to pair them without any blocking pairs.  



Multiple Stable Matchings

Suppose we take our algorithm and let the horses do the 
“proposing” instead.

We got a different answer…

What does that mean?

ℎ1𝑟1

𝑟2 ℎ2

ℎ1 , ℎ2 𝑟2 , 𝑟1

ℎ2 , ℎ1 𝑟1 , 𝑟2



Proposer-Optimality

Some agents might have more than one possible match in a stable 
matching. Call these people the “feasible partners.”

When there’s more than one stable matching, there is a tremendous 
benefit to being the proposing side.

Every member of the proposing side is matched to 
their favorite of their feasible partners.

Proposer-Optimality



Proposer-Optimality

Let’s prove it – again by contradiction

Suppose some rider is not matched to their favorite feasible partner.
Then some 𝑟 must have been the first to be rejected by their favorite feasible 
partner, ℎ. (Observation A)
And there is an 𝑟′ that ℎ (temporarily) matched to causing that rejection.

Let 𝑀′ be a matching where 𝑟, ℎ are matched. The rider 𝑟′ is matched to 
some ℎ′. 

What can we say about 𝑟′? They had never been rejected by a feasible partner. 
So they prefer ℎ to ℎ′. 

And ℎ prefers 𝑟′ to 𝑟 (by the run of the algorithm). 

But then (𝑟′, ℎ) are a blocking pair in 𝑀′!

Every member of the proposing side is matched to 
the favorite of their feasible partners.

Proposer-Optimality ℎ′𝑟

𝑟′ ℎ

ℎ′𝑟

𝑟′ ℎ



Implications of Proposer Optimality

We didn’t specify which rider proposes when more than one is free
Proposer-optimality says it doesn’t matter! You always get the proposer-optimal 
matching.

So what happens to the other side?

Every member of the proposing side is matched to 
their favorite of their feasible partners.

Proposer-Optimality



Chooser-Pessimality

A similar argument (it’s a good exercise!), will show that choosing 
among proposals is a much worse position to be in.

Every member of the choosing (non-proposing) side is 
matched to their least favorite of their feasible partners.

Chooser-Pessimality



Some More Context and Takeaways

Stable Matching has another common name: “Stable Marriage”

The metaphor used there is “men” and “women” getting married.

When choosing or analyzing an algorithm think about everyone 
involved, not just the people you’re optimizing for; you might not be 
able to have it all.

Stable Matchings always exist, and we can find them efficiently.

The GS Algorithm gives proposers their best possible partner
At the expense of those receiving proposals getting their worst possible.


