Outline

• Network flow definitions
• Flow examples
• Augmenting Paths
• Residual Graph
• Ford Fulkerson Algorithm
• Cuts
• Maxflow-MinCut Theorem
• Simple applications of Max Flow
Network Flow Definitions

- **Flowgraph**: Directed graph with distinguished vertices s (source) and t (sink)
- **Capacities on the edges**, $c(e) \geq 0$
- **Problem**, assign flows $f(e)$ to the edges such that:
 - $0 \leq f(e) \leq c(e)$
 - Flow is conserved at vertices other than s and t
 - Flow conservation: flow going into a vertex equals the flow going out
 - The flow leaving the source is as large as possible
Residual Graph

- Flow graph showing the remaining capacity
- Flow graph G, Residual Graph G_R
 - G: edge e from u to v with capacity c and flow f
 - G_R: edge e' from u to v with capacity $c - f$
 - G_R: edge e'' from v to u with capacity f
Augmenting Path Algorithm

- Augmenting path in residual graph
 - Vertices v_1, v_2, \ldots, v_k
 - $v_1 = s$, $v_k = t$
 - Possible to add b units of flow between v_j and v_{j+1} for $j = 1 \ldots k-1$

![Graph Diagram](image)
Adding flow along a path in the residual graph

- Let P be an s-t path in the residual graph with capacity b
- b units of flow can be added along P in the graph G
- Need to show:
 - new flow satisfies capacity constraints
 - new flow satisfies conservation constraints
while not done

Construct residual graph G_R
Find an s-t path P in G_R with capacity $b > 0$
Add b units of flow along path P in G

If the sum of the capacities of edges leaving S is at most C, then the algorithm takes at most C iterations
Flow Example I
Flow Example II
Cuts in a graph

- **Cut**: Partition of V into disjoint sets S, T with s in S and t in T.
- **Cap(S,T)**: sum of the capacities of edges from S to T
- **Flow(S,T)**: net flow out of S
 - Sum of flows out of S minus sum of flows into S

- **Flow(S,T) <= Cap(S,T)**
What is Cap(S,T) and Flow(S,T)

S={s, a, b, e, h}, T = {c, f, i, d, g, t}
What is $\text{Cap}(S,T)$ and $\text{Flow}(S,T)$

$S = \{s, a, b, e, h\}, \quad T = \{c, f, i, d, g, t\}$

$\text{Cap}(S,T) = 95, \quad \text{Flow}(S,T) = 80 - 15 = 65$
Minimum value cut

![Graph Diagram]

- Minimum value cut
 - Nodes: s, v, u, t
 - Edges: s→v (10), v→u (40), u→t (10), s→t (10)

Find a minimum value cut
Find a minimum value cut
Find a minimum value cut
MaxFlow – MinCut Theorem

• There exists a flow which has the same value of the minimum cut
• Proof: Consider a flow where the residual graph has no s-t path with positive capacity
• Let S be the set of vertices in G_R reachable from s with paths of positive capacity
Let S be the set of vertices in G_R reachable from s with paths of positive capacity.

What can we say about the flows and capacity between u and v?
Max Flow - Min Cut Theorem

• Ford-Fulkerson algorithm finds a flow where the residual graph is disconnected, hence FF finds a maximum flow.

• If we want to find a minimum cut, we begin by looking for a maximum flow.
History

- Ford / Fulkerson studied network flow in the context of the Soviet Rail Network
Ford Fulkerson Runtime

- **Cost per phase** \(X \) **number of phases**

- **Phases**
 - Capacity leaving source: \(C \)
 - Add at least one unit per phase

- **Cost per phase**
 - Build residual graph: \(O(m) \)
 - Find s-t path in residual: \(O(m) \)
Performance

• The worst case performance of the Ford-Fulkerson algorithm is horrible
Better methods of finding augmenting paths

• Find the maximum capacity augmenting path
 – $O(m^2 \log(C))$ time algorithm for network flow

• Find the shortest augmenting path
 – $O(m^2 n)$ time algorithm for network flow

• Find a blocking flow in the residual graph
 – $O(mn \log n)$ time algorithm for network flow