CSE 417 Algorithms and Complexity
Richard Anderson
Lecture 21
DP and Shortest Paths

Longest Common Subsequence
- C=c1…cn is a subsequence of A=a1…am if C can be obtained by removing elements from A (but retaining order)
- LCS(A, B): A maximum length sequence that is a subsequence of both A and B

LCS(BARTHOLEMEWSIMPSON, KRUSTYTHECLOWN) = RTHOWN

LCS Optimization
- A = a1a2…am, B = b1b2…bn
- Opt[j, k] is the length of LCS(a1a2…aj, b1b2…bk)
- Optimization Recurrence:
 - If a_j = b_k, Opt[j, k] = 1 + Opt[j-1, k-1]
 - If a_j != b_k, Opt[j, k] = max(Opt[j-1,k], Opt[j,k-1])

Dynamic Programming Computation

Code to compute Opt[n, m]

for (int i = 0; i < n; i++)
 for (int j = 0; j < m; j++)
 if (A[i] == B[j])
 Opt[i,j] = Opt[i-1, j-1] + 1;
 else if (Opt[i-1, j] >= Opt[i, j-1])
 Opt[i, j] = Opt[i-1, j];
 else
 Opt[i, j] = Opt[i, j-1];

Storing the path information
Reconstructing Path from Distances

How good is this algorithm?

- Is it feasible to compute the LCS of two strings of length 300,000 on a standard desktop PC? Why or why not.

Implementation 1

```java
public int ComputeLCS() {
    int n = str1.Length;
    int m = str2.Length;
    int[,] opt = new int[n + 1, m + 1];
    for (int i = 0; i <= n; i++)
        opt[i, 0] = 0;
    for (int j = 0; j <= m; j++)
        opt[0, j] = 0;
    for (int i = 1; i <= n; i++)
        for (int j = 1; j <= m; j++)
            if (str1[i - 1] == str2[j - 1])
                opt[i, j] = opt[i - 1, j - 1] + 1;
            else if (opt[i - 1, j] >= opt[i, j - 1])
                opt[i, j] = opt[i - 1, j];
            else
                opt[i, j] = opt[i, j - 1];
    return opt[n, m];
}
```

N = 17000

Runtime should be about 5 seconds*

* Personal PC, 6 years old

Implementation 2

```java
public int SpaceEfficientLCS() {
    int n = str1.Length;
    int m = str2.Length;
    int[] currRow = new int[m + 1];
    int[] prevRow = new int[m + 1];
    for (int j = 0; j <= m; j++)
        prevRow[j] = 0;
    for (int i = 1; i <= n; i++)
        currRow[0] = 0;
        for (int j = 1; j <= m; j++)
            if (str1[i - 1] == str2[j - 1])
                currRow[j] = prevRow[j - 1] + 1;
            else if (prevRow[j] >= currRow[j - 1])
                currRow[j] = prevRow[j];
            else
                currRow[j] = currRow[j - 1];
        for (int j = 1; j <= m; j++)
            prevRow[j] = currRow[j];
    return currRow[m];
}
```

N = 300000

N: 10000 Base 2 Length: 8096 Gamma: 0.8096 Runtime:00:00:01.86
N: 20000 Base 2 Length: 16231 Gamma: 0.81155 Runtime:00:00:07.45
N: 30000 Base 2 Length: 24317 Gamma: 0.8105667 Runtime:00:00:16.82
N: 40000 Base 2 Length: 32510 Gamma: 0.81275 Runtime:00:00:29.84
N: 50000 Base 2 Length: 40563 Gamma: 0.81126 Runtime:00:00:46.78
N: 60000 Base 2 Length: 48700 Gamma: 0.8116667 Runtime:00:01:08.06
N: 70000 Base 2 Length: 56824 Gamma: 0.8117715 Runtime:00:01:33.36
N: 300000 Base 2 Length: 243605 Gamma: 0.8120167 Runtime:00:28:07.32
Observations about the Algorithm

• The computation can be done in $O(m+n)$ space if we only need one column of the Opt values or Best Values.

• The computation requires $O(nm)$ space if we store all of the string information.

Computing LCS in $O(nm)$ time and $O(n+m)$ space

• Divide and conquer algorithm
• Recomputing values used to save space
• Section 6.7 of the text, but we will not have time to cover in detail (so you are not responsible for section 6.7).

Divide and Conquer Algorithm

• Where does the best path cross the middle column?

• For a fixed i, and for each j, compute the LCS that has a_i matched with b_j.

Algorithm Analysis

• $T(m,n) = T(m/2, j) + T(m/2, n-j) + cmn$
• Solution: $T(m,n) \leq 2cmn$

Prove by induction that $T(m,n) \leq 2cmn$

Shortest Paths with Dynamic Programming
Shortest Path Problem

- Dijkstra’s Single Source Shortest Paths Algorithm
 - $O(m \log n)$ time, positive cost edges
- Bellman-Ford Algorithm
 - $O(mn)$ time for graphs which can have negative cost edges

Lemma

- If a graph has no negative cost cycles, then the shortest paths are simple paths
- Shortest paths have at most $n-1$ edges

Shortest paths with a fixed number of edges

- Find the shortest path from s to w with exactly k edges

Express as a recurrence

- Compute distance from starting vertex s
- $\text{Opt}_k(w) = \min_x [\text{Opt}_{k-1}(x) + c_{xw}]$
- $\text{Opt}_0(w) = 0$ if $w = s$ and infinity otherwise

Algorithm, Version 1

for each w
 $M[0, w] = \infty;$
 $M[0, s] = 0;$
for $i = 1$ to $n-1$
 for each w
 $M[i, w] = \min_x(M[i-1, x] + \text{cost}(x, w));$

Algorithm, Version 2

for each w
 $M[0, w] = \infty;$
 $M[0, s] = 0;$
for $i = 1$ to $n-1$
 for each w
 $M[i, w] = \min(M[i-1, w], \min_x(M[i-1, x] + \text{cost}(x, w)));$
Algorithm, Version 3

for each w
 \(M[w] = \infty; \)
 \(M[s] = 0; \)
for i = 1 to n-1
 for each w
 \(M[w] = \min(M[w], \min_x(M[x] + \text{cost}[x,w])); \)

Correctness Proof for Algorithm 3

- Key lemma – at the end of iteration \(i \), for all \(w \), \(M[w] \leq M[i, w] \);

Algorithm, Version 4

for each w
 \(M[w] = \infty; \)
 \(M[s] = 0; \)
for i = 1 to n-1
 for each w
 for each x
 if \((M[w] > M[x] + \text{cost}[x,w]) \)
 \(P[w] = x; \)
 \(M[w] = M[x] + \text{cost}[x,w]; \)

Theorem

If the pointer graph has a cycle, then the graph has a negative cost cycle

Proof: See text.

Negative Cycles

- If the pointer graph has a cycle, then the graph has a negative cycle
- Therefore: if the graph has no negative cycles, then the pointer graph has no negative cycles
Finding negative cost cycles

- What if you want to find negative cost cycles?

What about finding Longest Paths

- Can we just change Min to Max?

Foreign Exchange Arbitrage

<table>
<thead>
<tr>
<th></th>
<th>USD</th>
<th>EUR</th>
<th>CAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>USD</td>
<td>1.2</td>
<td>----</td>
<td>1.2</td>
</tr>
<tr>
<td>EUR</td>
<td>0.8</td>
<td>1.2</td>
<td>----</td>
</tr>
<tr>
<td>CAD</td>
<td>0.8</td>
<td>0.6</td>
<td>----</td>
</tr>
</tbody>
</table>

\[
\text{USD} \rightarrow \text{EUR} \rightarrow \text{CAD} = 1.2 \times 0.8 \times 0.6 = 0.96
\]

\[
\text{USD} \rightarrow \text{CAD} \rightarrow \text{EUR} = 1.2 \times 0.8 \times 1.6 = 1.536
\]