CSE 417 Algorithms

Lecture 17, Winter 2020
Divide and Conquer
Dynamic Programming
Announcements
Divide and Conquer Algorithms

• Mergesort, Quicksort
• Strassen’s Algorithm
• Median
• Inversion counting
• Closest Pair Algorithm (2d)
• Integer Multiplication (Karatsuba’s Algorithm)
Integer Arithmetic

\[
\begin{align*}
9715480283945084383094856701043643845790217965702956767 \\
+ 1242431098234099057329075097179898430928779579277597977 \\
\hline
2095067093034680994318596846868779409766717133476767930
\end{align*}
\]

Runtime for standard algorithm to add two n digit numbers:

\[
2095067093034680994318596846868779409766717133476767930 \\
\times 5920175091777634709677679342929097012308956679993010921 \\
\hline
\]

Runtime for standard algorithm to multiply two n digit numbers:
Recursive Multiplication Algorithm (First attempt)

\[x = x_1 \cdot 2^{n/2} + x_0 \]

\[y = y_1 \cdot 2^{n/2} + y_0 \]

\[xy = (x_1 \cdot 2^{n/2} + x_0) \cdot (y_1 \cdot 2^{n/2} + y_0) \]

\[= x_1 y_1 \cdot 2^n + (x_1 y_0 + x_0 y_1)2^{n/2} + x_0 y_0 \]

Recurrence:

Run time:
Simple algebra

\[x = x_1 \cdot 2^{n/2} + x_0 \]

\[y = y_1 \cdot 2^{n/2} + y_0 \]

\[xy = x_1 y_1 \cdot 2^n + (x_1 y_0 + x_0 y_1) \cdot 2^{n/2} + x_0 y_0 \]

\[p = (x_1 + x_0)(y_1 + y_0) = x_1 y_1 + x_1 y_0 + x_0 y_1 + x_0 y_0 \]
Karatsuba’s Algorithm

Multiply n-digit integers x and y

Let $x = x_1 \cdot 2^{n/2} + x_0$ and $y = y_1 \cdot 2^{n/2} + y_0$
Recursively compute
$$a = x_1 y_1$$
$$b = x_0 y_0$$
$$p = (x_1 + x_0)(y_1 + y_0)$$
Return $a2^n + (p - a - b)2^{n/2} + b$

Recurrence: $T(n) = 3T(n/2) + cn$

$\log_2 3 = 1.58496250073…$
Fast Integer Multiplication

• Grade School $O(n^2)$
• Karatsuba $O(n^{1.58})$
• Toom-Cook $O(n^{1.46})$ [For 3 pieces]
 – $O(n^{1+\text{eps}})$ [For k pieces]
• Schonhage-Strassen
 – Fast Fourier Transform based algorithm
 – $O(n \log n \log\log n)$
 – Becomes practical for $\sim25,000$ digits
Dynamic Programming
Dynamic Programming

• Weighted Interval Scheduling
• Given a collection of intervals I_1, \ldots, I_n with weights w_1, \ldots, w_n, choose a maximum weight set of non-overlapping intervals

Intervals sorted by end time
Optimality Condition

- Opt\[j \] is the maximum weight independent set of intervals \(I_1, I_2, \ldots, I_j \)

- \(\text{Opt}[j] = \max(\text{Opt}[j-1], w_j + \text{Opt}[p[j]]) \)
 - Where \(p[j] \) is the index of the last interval which finishes before \(I_j \) starts
Algorithm

MaxValue(j) =

if j = 0 return 0
else

 return max(MaxValue(j-1),
 w_j + MaxValue(p[j]))

Worst case run time: 2^n
A better algorithm

M[j] initialized to -1 before the first recursive call for all j

MaxValue(j) =
 if j = 0 return 0;
 else if M[j] != -1 return M[j];
 else
 M[j] = max(MaxValue(j-1), w_j + MaxValue(p[j]));
 return M[j];
Iterative Algorithm

Express the MaxValue algorithm as an iterative algorithm

MaxValue {

}
Fill in the array with the Opt values

\[\text{Opt}[j] = \max (\text{Opt}[j-1], w_j + \text{Opt}[p[j]]) \]
Computing the solution

\[\text{Opt}[j] = \max \left(\text{Opt}[j-1], w_j + \text{Opt}[p[j]] \right) \]

Record which case is used in Opt computation
Dynamic Programming

- The most important algorithmic technique covered in CSE 421
- Key ideas
 - Express solution in terms of a polynomial number of sub problems
 - Order sub problems to avoid recomputation