CSE 417
Algorithms

Richard Anderson
Lecture 15, Winter 2020
Divide and Conquer
What you really need to know about recurrences

- Work per level changes geometrically with the level
- Geometrically increasing \((x > 1)\)
 - The bottom level wins
- Geometrically decreasing \((x < 1)\)
 - The top level wins
- Balanced \((x = 1)\)
 - Equal contribution
\[T(n) = aT(n/b) + n^c \]

- **Balanced**: \(a = b^c \)
 - \(T(n) = 16T(n/4) + n^2 \)
- **Increasing**: \(a > b^c \)
 - \(T(n) = 5T(n/3) + n \)
 - \(T(n) = 3T(n/4) + n^{1/2} \)
- **Decreasing**: \(a < b^c \)
 - \(T(n) = T(4n/5) + n \)
 - \(T(n) = 7T(n/2) + n^3 \)
Divide and Conquer Algorithms

- Split into sub problems
- Recursively solve the problem
- Combine solutions

- Make progress in the split and combine stages
 - Quicksort – progress made at the split step
 - Mergesort – progress made at the combine step

- D&C Algorithms
 - Strassen’s Algorithm – Matrix Multiplication
 - Inversions
 - Median
 - Closest Pair
 - Integer Multiplication
How to multiply 2 x 2 matrices with 7 multiplications

Multiply 2 x 2 Matrices:
\[
\begin{pmatrix}
 r & s \\
 t & u \\
\end{pmatrix}
= \begin{pmatrix}
 a & b \\
 e & g \\
\end{pmatrix}
\begin{pmatrix}
 c & d \\
 f & h \\
\end{pmatrix}
\]

\[
r = p_1 + p_2 - p_4 + p_6
\]
\[
s = p_4 + p_5
\]
\[
t = p_6 + p_7
\]
\[
u = p_2 - p_3 + p_5 - p_7
\]

Where:
\[
p_1 = (b - d)(f + h)
\]
\[
p_2 = (a + d)(e + h)
\]
\[
p_3 = (a - c)(e + g)
\]
\[
p_4 = (a + b)h
\]
\[
p_5 = a(g - h)
\]
\[
p_6 = d(f - e)
\]
\[
p_7 = (c + d)e
\]

Aho, Hopcroft, Ullman 1974
Strassen’s Algorithms

• Treat $n \times n$ matrices as 2×2 matrices of $n/2 \times n/2$ submatrices
• Use Strassen’s trick to multiply 2×2 matrices with 7 multiplies
• Base case standard multiplication for single entries
• Recurrence: $T(n) = 7T(n/2) + cn^2$
• Solution is $O(7^{\log n}) = O(n^{\log 7})$ which is about $O(n^{2.807})$
Inversion Problem

- Let a_1, \ldots, a_n be a permutation of $1 \ldots n$
- (a_i, a_j) is an inversion if $i < j$ and $a_i > a_j$

4, 6, 1, 7, 3, 2, 5

- Problem: given a permutation, count the number of inversions
- This can be done easily in $O(n^2)$ time
 - Can we do better?
Application

- Counting inversions can be used to measure how close ranked preferences are
 - People rank 20 movies, based on their rankings you cluster people who like that same type of movie
Counting Inversions

11 12 4 1 7 2 3 15 9 5 16 8 6 13 10 14

Count inversions on lower half
Count inversions on upper half
Count the inversions between the halves
Count the Inversions
Problem – how do we count inversions between sub problems in $O(n)$ time?

• Solution – Count inversions while merging

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>7</th>
<th>11</th>
<th>12</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>6</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>13</td>
<td>14</td>
<td>16</td>
</tr>
</tbody>
</table>

Standard merge algorithm – add to inversion count when an element is moved from the upper array to the solution
Use the merge algorithm to count inversions

Indicate the number of inversions for each element detected when merging
Inversions

• Counting inversions between two sorted lists
 – $O(1)$ per element to count inversions

\[
\begin{array}{cccccccc}
 x & x & x & x & x & x & x & x \\
\end{array}
\quad
\begin{array}{cccccccc}
 y & y & y & y & y & y & y & y \\
\end{array}
\quad
\begin{array}{cccccccc}
 z & z & z & z & z & z & z & z \\
\end{array}
\quad
\begin{array}{cccccccc}
 z & z & z & z & z & z & z & z \\
\end{array}
\quad
\begin{array}{cccccccc}
 z & z & z & z & z & z & z & z \\
\end{array}
\]

• Algorithm summary
 – Satisfies the “Standard recurrence”
 – $T(n) = 2 \cdot T(n/2) + cn$
Computing the Median

- Given n numbers, find the number of rank $n/2$
- One approach is sorting
 - Sort the elements, and choose the middle one
 - Can you do better?
Problem generalization

• *Selection*, given n numbers and an integer k, find the k-th largest
Select(A, k)

Select(A, k) {
 Choose element x from A
 $S_1 = \{y \in A \mid y < x\}$
 $S_2 = \{y \in A \mid y > x\}$
 $S_3 = \{y \in A \mid y = x\}$
 if ($|S_2| \geq k$)
 return Select(S_2, k)
 else if ($|S_2| + |S_3| \geq k$)
 return x
 else
 return Select(S_1, $k - |S_2| - |S_3|$)
}
Randomized Selection

• Choose the element at random
• Analysis can show that the algorithm has expected run time $O(n)$
Deterministic Selection

• What is the run time of select if we can guarantee that choose finds an x such that $|S_1| < 3n/4$ and $|S_2| < 3n/4$ in $O(n)$ time
BFPRT Algorithm

• A very clever choose algorithm . . .

Split into \(n/5 \) sets of size 5
M be the set of medians of these sets
Let \(x \) be the median of M
BFPRT runtime

\[|S_1| < \frac{3n}{4}, \quad |S_2| < \frac{3n}{4} \]

Split into \(\frac{n}{5} \) sets of size 5

M be the set of medians of these sets

x be the median of M

Construct \(S_1 \) and \(S_2 \)

Recursive call in \(S_1 \) or \(S_2 \)
BFPRRT Recurrence

- \(T(n) \leq T(3n/4) + T(n/5) + c \, n \)

Prove that \(T(n) \leq 20 \, c \, n \)