CSE 417
Algorithms
Winter 2020
Lecture 12
Minimum Spanning Trees (Part II)
Announcements

• Midterm, Monday, February 10
• Sections 1.1 through 5.2
• Wednesday and Friday
 – Divide and Conquer and Recurrences
• Homework 5, Due February 12 will not be graded
Minimum Spanning Tree

Undirected Graph $G=(V,E)$ with edge weights

For simplicity, assume all edge costs are distinct
Greedy Algorithms for Minimum Spanning Tree

- **[Prim]** Extend a tree by including the cheapest outgoing edge
- **[Kruskal]** Add the cheapest edge that joins disjoint components

![Graph diagram with edge weights]
Edge inclusion lemma

• Let S be a subset of V, and suppose $e = (u, v)$ is the minimum cost edge of E, with u in S and v in $V - S$

• e is in every minimum spanning tree of G
 – Or equivalently, if e is not in T, then T is not a minimum spanning tree
Proof

• Suppose T is a spanning tree that does not contain e.
• Add e to T, this creates a cycle.
• The cycle must have some edge $e_1 = (u_1, v_1)$ with u_1 in S and v_1 in $V - S$.
• $T_1 = T - \{e_1\} + \{e\}$ is a spanning tree with lower cost.
• Hence, T is not a minimum spanning tree.

Note: e is the minimum cost edge between S and $V - S$.
Optimality Proofs

• Prim’s Algorithm computes a MST
• Kruskal’s Algorithm computes a MST

• Show that when an edge is added to the MST by Prim or Kruskal, the edge is the minimum cost edge between S and $V-S$ for some set S.
Prim’s Algorithm

\[S = \{ \} ; \quad T = \{ \} ; \]
while \(S \neq V \)

choose the minimum cost edge
\[e = (u,v) , \text{ with } u \text{ in } S , \text{ and } v \text{ in } V-S \]
add \(e \) to \(T \)
add \(v \) to \(S \)
Prove Prim’s algorithm computes an MST

• Show an edge \(e \) is in the MST when it is added to \(T \)
Kruskal’s Algorithm

Let $C = \{\{v_1\}, \{v_2\}, \ldots, \{v_n\}\}; \ T = \{\}$

while $|C| > 1$

Let $e = (u, v)$ with u in C_i and v in C_j be the minimum cost edge joining distinct sets in C

Replace C_i and C_j by $C_i \cup C_j$

Add e to T
Prove Kruskal’s algorithm computes an MST

• Show an edge e is in the MST when it is added to T
Application: Clustering

• Given a collection of points in an r-dimensional space and an integer K, divide the points into K sets that are closest together
Distance clustering

• Divide the data set into K subsets to maximize the distance between any pair of sets

 $\text{dist} (S_1, S_2) = \min \{\text{dist}(x, y) \mid x \text{ in } S_1, y \text{ in } S_2\}$
Divide into 2 clusters
Divide into 3 clusters
Divide into 4 clusters
Distance Clustering Algorithm

Let $C = \{\{v_1\}, \{v_2\}, \ldots, \{v_n\}\}; \quad T = \{\}$

while $|C| > K$

Let $e = (u, v)$ with u in C_i and v in C_j be the minimum cost edge joining distinct sets in C

Replace C_i and C_j by $C_i \cup C_j$
K-clustering
Shortest paths in directed graphs vs undirected graphs
What about the minimum spanning tree of a directed graph?

- Must specify the root r
- Branching: Out tree with root r

Assume all vertices reachable from r

Also called an arborescence
Finding a minimum branching

10 2 10

1 4

2 2

8 4

2

2

2

4
Another MST Algorithm

• Choose minimum cost edge into each vertex
• Merge into components
• Repeat until done
Idea for branching algorithm

- Select minimum cost edge going into each vertex
- If graph is a branching then done
- Otherwise collapse cycles and repeat
Finding a minimum branching

- Remove all edges going into r
- Normalize the edge weights, so the minimum weight edge coming into each vertex has weight zero

This does not change the edges of the minimum branching
Finding a minimum branching

• Consider the graph that consists of the minimum cost edge coming in to each vertex
 – If this graph is a branching, then it is the minimum cost branching
 – Otherwise, the graph contains one or more cycles
 • Collapse the cycles in the original graph to super vertices
 • Reweight the graph and repeat the process
Finding a minimum branching
Correctness Proof

Lemma 4.38 Let C be a cycle in G consisting of edges of cost 0 with r not in C. There is an optimal branching rooted at r that has exactly one edge entering C.

- The lemma justifies using the edges of the cycle in the branching
- An induction argument is used to cover the multiple levels of compressing cycles