Dijkstra’s Algorithm
Implementation and Runtime

Edge costs are assumed to be non-negative

S = { }; d[s] = 0; d[v] = infinity for v != s

While S != V

Choose v in V-S with minimum d[v]
Add v to S
For each w in the neighborhood of v

\[d[w] = \min(d[w], d[v] + c(v, w)) \]

HEAP OPERATIONS
n Extract Mins
m Heap Updates
Run Time

• Basic Heap Implementation
 – $O(\log n)$ extract min and update key
 – $O((m + n) \log n)$ run time

• Fancy data structures: Fibonacci Heaps
 – $O(m + n \log n)$

• Dense graphs
 – $O(n^2)$
Shortest Paths

- Negative Cost Edges
 - Dijkstra’s algorithm assumes positive cost edges
 - For some applications, negative cost edges make sense
 - Shortest path not well defined if a graph has a negative cost cycle
Negative Cost Edge Preview

- Topological Sort can be used for solving the shortest path problem in directed acyclic graphs.
- Bellman-Ford algorithm finds shortest paths in a graph with negative cost edges (or reports the existence of a negative cost cycle).
Bottleneck Shortest Path

• Define the bottleneck distance for a path to be the maximum cost edge along the path.
Compute the bottleneck shortest paths
Dijkstra’s Algorithm for Bottleneck Shortest Paths

\[S = \{ \}; \quad d[s] = \text{negative infinity}; \quad d[v] = \text{infinity for } v \neq s \]

While \(S \neq V \)

Choose \(v \) in \(V-S \) with minimum \(d[v] \)

Add \(v \) to \(S \)

For each \(w \) in the neighborhood of \(v \)

\[d[w] = \min(d[w], \max(d[v], c(v, w))) \]
Minimum Spanning Tree

• Introduce Problem
• Demonstrate three different greedy algorithms
• Provide proofs that the algorithms work
Minimum Spanning Tree
Greedy Algorithms for Minimum Spanning Tree

- Extend a tree by including the cheapest outgoing edge.
- Add the cheapest edge that joins disjoint components.
- Delete the most expensive edge that does not disconnect the graph.
Greedy Algorithm 1
Prim’s Algorithm

• Extend a tree by including the cheapest outgoing edge

Construct the MST with Prim’s algorithm starting from vertex a
Label the edges in order of insertion
Greedy Algorithm 2
Kruskal’s Algorithm

• Add the cheapest edge that joins disjoint components

Construct the MST with Kruskal’s algorithm
Label the edges in order of insertion
Greedy Algorithm 3
Reverse-Delete Algorithm

- Delete the most expensive edge that does not disconnect the graph

Construct the MST with the reverse-delete algorithm
Label the edges in order of removal
Dijkstra’s Algorithm for Minimum Spanning Trees

S = { }; \ d[s] = 0; \ d[v] = \text{infinity for} \ v \neq s

While S \neq V

Choose v in V-S with minimum d[v]
Add v to S
For each w in the neighborhood of v
\[d[w] = \min(d[w], c(v, w))\]
Minimum Spanning Tree

Undirected Graph $G = (V, E)$ with edge weights
Greedy Algorithms for Minimum Spanning Tree

- **[Prim]** Extend a tree by including the cheapest outgoing edge
- **[Kruskal]** Add the cheapest edge that joins disjoint components
- **[ReverseDelete]** Delete the most expensive edge that does not disconnect the graph
Why do the greedy algorithms work?

- For simplicity, assume all edge costs are distinct
Edge inclusion lemma

- Let S be a subset of V, and suppose $e = (u, v)$ is the minimum cost edge of E, with u in S and v in $V - S$
- e is in every minimum spanning tree of G
 - Or equivalently, if e is not in T, then T is not a minimum spanning tree

```
S ---- e ---- V - S
```
Proof

• Suppose T is a spanning tree that does not contain e
• Add e to T, this creates a cycle
• The cycle must have some edge $e_1 = (u_1, v_1)$ with u_1 in S and v_1 in $V-S$

$T_1 = T - \{e_1\} + \{e\}$ is a spanning tree with lower cost
• Hence, T is not a minimum spanning tree

e is the minimum cost edge between S and $V-S$