CSE 417
Algorithms
Richard Anderson
Winter 2020
Lecture 9 – Greedy Algorithms II
Announcements

• Today’s lecture
 – Kleinberg-Tardos, 4.2, 4.3
• Wednesday and Friday
 – Kleinberg-Tardos, 4.4, 4.5
Greedy Algorithms

• Solve problems with the simplest possible algorithm
• The hard part: showing that something simple actually works
• Today’s problems (Sections 4.2, 4.3)
 – Graph Coloring
 – Homework Scheduling
 – Optimal Caching
Greedy Graph Coloring

Theorem: An undirected graph with maximum degree K can be colored with $K+1$ colors.
Let k be the largest vertex degree
Choose k colors

for each vertex v
 Color[v] = uncolored

for each vertex v
 Let c be a color not used in $N[v]$
 Color[v] = c
for each vertex v
 Color[v] = uncolored

for each vertex v
 Let c be the smallest color not used in N[v]
 Color[v] = c
Homework Scheduling

- Tasks to perform
- Deadlines on the tasks
- Freedom to schedule tasks in any order

- Can I get all my work turned in on time?
- If I can’t get everything in, I want to minimize the maximum lateness
Scheduling tasks

- Each task has a length t_i and a deadline d_i
- All tasks are available at the start
- One task may be worked on at a time
- All tasks must be completed

- Goal: minimize maximum lateness
 - Lateness: $L_i = f_i - d_i$ if $f_i \geq d_i$
Example

Time

Deadline

<table>
<thead>
<tr>
<th>a₁</th>
<th>a₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

Lateness 1

Lateness 3
Determine the minimum lateness

<table>
<thead>
<tr>
<th>Time</th>
<th>Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>a₁</td>
<td>2</td>
</tr>
<tr>
<td>a₂</td>
<td>3</td>
</tr>
<tr>
<td>a₃</td>
<td>4</td>
</tr>
<tr>
<td>a₄</td>
<td>5</td>
</tr>
</tbody>
</table>
Greedy Algorithm

- Earliest deadline first
- Order jobs by deadline
- This algorithm is optimal
Analysis

• Suppose the jobs are ordered by deadlines, $d_1 \leq d_2 \leq \ldots \leq d_n$

• A schedule has an *inversion* if job j is scheduled before i where $j > i$

• The schedule A computed by the greedy algorithm has no inversions.

• Let O be the optimal schedule, we want to show that A has the same maximum lateness as O
List the inversions

<table>
<thead>
<tr>
<th>Time</th>
<th>Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>a₁</td>
<td>3</td>
</tr>
<tr>
<td>a₂</td>
<td>4</td>
</tr>
<tr>
<td>a₃</td>
<td>2</td>
</tr>
<tr>
<td>a₄</td>
<td>5</td>
</tr>
</tbody>
</table>

![Diagram showing the inversions and time deadlines for tasks a₁ to a₄.](chart)
Lemma: There is an optimal schedule with no idle time

- It doesn’t hurt to start your homework early!

- Note on proof techniques
 - This type of can be important for keeping proofs clean
 - It allows us to make a simplifying assumption for the remainder of the proof
Lemma

- If there is an inversion i, j, there is a pair of adjacent jobs i’, j’ which form an inversion.
Suppose there is a pair of jobs i and j, with $d_i \leq d_j$, and j scheduled immediately before i. Interchanging i and j does not increase the maximum lateness.
Proof by Bubble Sort

Determine maximum lateness
Real Proof

• There is an optimal schedule with no inversions and no idle time.
• Let O be an optimal schedule k inversions, we construct a new optimal schedule with k-1 inversions
• Repeat until we have an optimal schedule with 0 inversions
• This is the solution found by the earliest deadline first algorithm
Result

• Earliest Deadline First algorithm constructs a schedule that minimizes the maximum lateness
Homework Scheduling

- How is the model unrealistic?
Extensions

• What if the objective is to minimize the sum of the lateness?
 – EDF does not work

• If the tasks have release times and deadlines, and are non-preemptable, the problem is NP-complete

• What about the case with release times and deadlines where tasks are preemptable?
Optimal Caching

• Caching problem:
 – Maintain collection of items in local memory
 – Minimize number of items fetched
Caching example

A, B, C, D, A, E, B, A, D, A, C, B, D, A
Optimal Caching

• If you know the sequence of requests, what is the optimal replacement pattern?
• Note – it is rare to know what the requests are in advance – but we still might want to do this:
 – Some specific applications, the sequence is known
 • Register allocation in code generation
 – Competitive analysis, compare performance on an online algorithm with an optimal offline algorithm
Farthest in the future algorithm

- Discard element used farthest in the future

A, B, C, A, C, D, C, B, C, A, D
Correctness Proof

- Sketch
- Start with Optimal Solution O
- Convert to Farthest in the Future Solution F-F
- Look at the first place where they differ
- Convert O to evict F-F element
 - There are some technicalities here to ensure the caches have the same configuration . . .
Later this week