Graph Theory

- $G = (V, E)$
 - V: vertices, $|V|= n$
 - E: edges, $|E| = m$
- Undirected graphs
 - Edges sets of two vertices (u, v)
- Directed graphs
 - Edges ordered pairs (u, v)
- Path: v_1, v_2, \ldots, v_k, with $(v_i, v_{i+1}) \in E$
- Simple Path
- Cycle
- Simple Cycle
- Neighborhood
 - $N(v)$

Graph Algorithms (Review)

- Graph Search (Undirected or Directed graphs)
 - Find a path from s to t. $O(n + m)$ time.
- Breadth First Search (Undirected) $O(n+m)$ time
 - Non tree edges: Intra level edges or adjacent levels
- Depth First Search (Undirected) $O(n+m)$ time
 - Non tree edges: Back edges
- Two coloring algorithm (Bipartite testing)
 - Constructed BFS and color levels alternating colors
 - Graph is bipartite iff no odd length cycles

Graph Connectivity

- An undirected graph is **connected** if there is a path between every pair of vertices x and y
- A **connected component** is a maximal connected subset of vertices

Connected Components

- Undirected Graphs
Computing Connected Components in $O(n+m)$ time

- A search algorithm from a vertex v can find all vertices in v's component
- While there is an unvisited vertex v, search from v to find a new component

Directed Graphs

- A directed graph is strongly connected if for every pair of vertices x and y, there is a path from x to y, and there is a path from y to x

Strongly Connected

Not Strongly Connected

Testing if a graph is strongly connected

- Pick a vertex x
 - $S_1 = \{ y |$ path from x to y $\}$
 - $S_2 = \{ y |$ path from y to x $\}$
 - If $|S_1| = n$ and $|S_2| = n$ then strongly connected

Strongly Connected Components

A set of vertices C is a strongly connected component if C is a maximal strongly connected subgraph

Strongly connected components can be found in $O(n+m)$ time

- But it's tricky!
- Simpler problem: given a vertex v, compute the vertices in v's scc in $O(n+m)$ time

Topological Sort

- Given a set of tasks with precedence constraints, find a linear order of the tasks
Find a topological order for the following graph

If a graph has a cycle, there is no topological sort
- Consider the first vertex on the cycle in the topological sort
- It must have an incoming edge

Definition: A graph is Acyclic if it has no cycles

Lemma: If a (finite) graph is acyclic, it has a vertex with in-degree 0
- Proof:
 - Pick a vertex v_1, if it has in-degree 0 then done
 - If not, let (v_2, v_1) be an edge, if v_2 has in-degree 0 then done
 - If not, let (v_3, v_2) be an edge . . .
 - If this process continues for more than n steps, we have a repeated vertex, so we have a cycle

Topological Sort Algorithm
While there exists a vertex v with in-degree 0
Output vertex v
Delete the vertex v and all out going edges

Details for $O(n+m)$ implementation
- Maintain a list of vertices of in-degree 0
- Each vertex keeps track of its in-degree
- Update in-degrees and list when edges are removed
- m edge removals at $O(1)$ cost each

Random Graphs
- What is a random graph?
- Choose edges at random
- Interesting model of certain phenomena
- Mathematical study
- Useful inputs for graph algorithms
Model of Random Graphs

- Undirected Graphs
 - Random Graph with n vertices and m edges, G_m
 - Random Graph with n vertices where each edge has probability p, G_p
 - Models are similar when $p = \frac{2m}{n(n-1)}$

```csharp
for (int i = 0; i < n - 1; i++)
for (int j = i + 1; j < n; j++)
    if (random.NextDouble() < p)
        AddEdge(i, j);
```