CSE 421
Algorithms
Graphs
Winter 2020
Lecture 6

Announcements

• Reading
 — Chapter 3
 — Start on Chapter 4
• No class on Monday.
• Richard Anderson will hold extra office hours today
 — Friday, Jan 17, 2:00 – 3:00, CSE2 344

Graph Theory

• $G = (V, E)$
 — V: vertices, $|V| = n$
 — E: edges, $|E| = m$
• Undirected graphs
 — Edges sets of two vertices (u, v)
• Directed graphs
 — Edges ordered pairs (u, v)
• Many other flavors
 — Edge / vertices weights
 — Parallel edges
 — Self loops
• Path: $v_1, v_2, ..., v_k$, with (v_i, v_{i+1}) in E
 — Simple Path
 — Cycle
 — Simple Cycle
• Neighborhood
 — $N(v)$
• Distance
• Connectivity
 — Undirected
 — Directed (strong connectivity)
• Trees
 — Rooted
 — Unrooted

Graph Representation

Graph search

• Find a path from s to t

$$S = \{s\}$$
while S is not empty
 $$u = \text{Select}(S)$$
 visit u
 foreach v in $N(u)$
 if v is unvisited
 Add(S, v)
 Pred[v] = u
 if ($v = t$) then path found
Breadth first search

- Explore vertices in layers
 - s in layer 1
 - Neighbors of s in layer 2
 - Neighbors of layer 2 in layer 3 . . .

Breadth First Search

- Build a BFS tree from s

 $Q = \{s\}$

 $Level(s) = 1$;

 while Q is not empty

 $u = Q.Dequeue()$

 visit u

 foreach v in $N(u)$

 if v is unvisited

 $Q.Enqueue(v)$

 $Pred(v) = u$

 $Level[v] = Level[u] + 1$

Key observation

- All edges go between vertices on the same layer or adjacent layers

Bipartite Graphs

- A graph V is bipartite if V can be partitioned into V_1, V_2 such that all edges go between V_1 and V_2

 - A graph is bipartite if it can be two colored

Can this graph be two colored?

Algorithm

- Run BFS
- Color odd layers red, even layers blue
- If no edges between the same layer, the graph is bipartite
- If edge between two vertices of the same layer, then there is an odd cycle, and the graph is not bipartite
Theorem: A graph is bipartite if and only if it has no odd cycles

Lemma 1

- If a graph contains an odd cycle, it is not bipartite

Lemma 2

- If a BFS tree has an *intra-level edge*, then the graph has an odd length cycle

Intra-level edge: both end points are in the same level

Lemma 3

- If a graph has no odd length cycles, then it is bipartite

Graph Search

- Data structure for next vertex to visit determines search order

Breadth First Search

- $S = \{s\}$
- while S is not empty
 - $u = \text{Dequeue}(S)$
 - if u is unvisited
 - visit u
 - foreach v in $N(u)$
 - Enqueue(S, v)

Depth First Search

- $S = \{s\}$
- while S is not empty
 - $u = \text{Pop}(S)$
 - if u is unvisited
 - visit u
 - foreach v in $N(u)$
 - Push(S, v)
Breadth First Search
• All edges go between vertices on the same layer or adjacent layers

Depth First Search
• Each edge goes between vertices on the same branch
• No cross edges

Connected Components
• Undirected Graphs
Computing Connected Components in O(n+m) time
• A search algorithm from a vertex v can find all vertices in v’s component
• While there is an unvisited vertex v, search from v to find a new component

Directed Graphs
• A Strongly Connected Component is a subset of the vertices with paths between every pair of vertices.

Identify the Strongly Connected Components
Strongly connected components can be found in $O(n+m)$ time

• But it’s tricky!
• Simpler problem: given a vertex v, compute the vertices in v’s scc in $O(n+m)$ time

Topological Sort

• Given a set of tasks with precedence constraints, find a linear order of the tasks

Find a topological order for the following graph

If a graph has a cycle, there is no topological sort

• Consider the first vertex on the cycle in the topological sort
• It must have an incoming edge

Definition: A graph is Acyclic if it has no cycles

Lemma: If a (finite) graph is acyclic, it has a vertex with in-degree 0

• Proof:
 – Pick a vertex v_1, if it has in-degree 0 then done
 – If not, let (v_2, v_1) be an edge, if v_2 has in-degree 0 then done
 – If not, let (v_p, v_2) be an edge . . .
 – If this process continues for more than n steps, we have a repeated vertex, so we have a cycle

Topological Sort Algorithm

While there exists a vertex v with in-degree 0

Output vertex v

Delete the vertex v and all out going edges
Details for O(n+m) implementation

- Maintain a list of vertices of in-degree 0
- Each vertex keeps track of its in-degree
- Update in-degrees and list when edges are removed
- m edge removals at O(1) cost each