Worst Case Runtime Function
• Problem P: Given instance I compute a solution S
• A is an algorithm to solve P
• T(I) is the number of steps executed by A on instance I
• T(n) is the maximum of T(I) for all instances of size n

Ignore constant factors
• Constant factors are arbitrary
 – Depend on the implementation
 – Depend on the details of the model
• Determining the constant factors is tedious and provides little insight
• Express run time as \(T(n) = O(f(n)) \)

Formalizing growth rates
• \(T(n) = O(f(n)) \) \([T : \mathbb{Z}^+ \rightarrow \mathbb{R}^+] \)
 – If \(n \) is sufficiently large, \(T(n) \) is bounded by a constant multiple of \(f(n) \)
 – Exist \(c, n_0 \), such that for \(n > n_0 \), \(T(n) < c f(n) \)
• \(T(n) = O(f(n)) \) will be written as:
 \(T(n) = O(f(n)) \)
 – Be careful with this notation

Prove \(3n^2 + 5n + 20 \) is \(O(n^2) \)
Let \(c = \)
Let \(n_0 = \)

\(T(n) = O(f(n)) \) if there exist \(c, n_0 \), such that for \(n > n_0 \),
\(T(n) < c f(n) \)
Order the following functions in increasing order by their growth rate

a) \(n \log^{4} n \)
b) \(2n^2 + 10n \)
c) \(2^{n^{100}} \)
d) \(1000n + \log^9 n \)
e) \(n^{100} \)
f) \(3^n \)
g) \(1000 \log^{100} n \)
h) \(n^{1/2} \)

Lower bounds

- \(T(n) = \Omega(f(n)) \)
 - \(T(n) \) is at least a constant multiple of \(f(n) \)
 - There exists an \(n_0 \) and \(\epsilon > 0 \) such that \(T(n) > \epsilon f(n) \) for all \(n > n_0 \)
- Warning: definitions of \(\Omega \) vary

- \(T(n) = \Theta(f(n)) \) if \(T(n) \) is \(O(f(n)) \) and \(T(n) \) is \(\Omega(f(n)) \)

Useful Theorems

- If \(\lim (f(n) / g(n)) = c \) for \(c > 0 \) then \(f(n) = \Theta(g(n)) \)

- If \(f(n) \) is \(O(g(n)) \) and \(g(n) \) is \(O(h(n)) \) then \(f(n) \) is \(O(h(n)) \)

- If \(f(n) \) is \(O(h(n)) \) and \(g(n) \) is \(O(h(n)) \) then \(f(n) + g(n) \) is \(O(h(n)) \)

Ordering growth rates

- For \(b > 1 \) and \(x > 0 \)
 - \(\log^b n \) is \(O(n^x) \)

- For \(r > 1 \) and \(d > 0 \)
 - \(n^d \) is \(O(r^n) \)

Graph Theory

- \(G = (V, E) \)
 - \(V \) – vertices
 - \(E \) – edges
- Undirected graphs
 - Edges sets of two vertices \(\{u, v\} \)
- Directed graphs
 - Edges ordered pairs \((u, v) \)
- Many other flavors
 - Edge / vertices weights
 - Parallel edges
 - Self loops

Definitions

- Path: \(v_1, v_2, \ldots, v_n \), with \((v_i, v_{i+1}) \) in \(E \)
 - Simple Path
 - Cycle
 - Simple Cycle
- Neighborhood
 - \(N(v) \)
- Distance
- Connectivity
 - Undirected
 - Directed (strong connectivity)
- Trees
 - Rooted
 - Unrooted
Graph Representation

\[V = \{a, b, c, d\} \]
\[E = \{(a, b), (a, c), (a, d), (b, d)\} \]

Adjacency List

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Incidence Matrix

- **Graph search**
 - Find a path from s to t

 \[S = \{s\} \]

 while S is not empty

 \[u = \text{Select}(S) \]

 visit \(u \)

 foreach \(v \) in \(N(u) \)

 if \(v \) is unvisited

 Add(S, v)

 \[\text{Pred}[v] = u \]

 if \((v = t) \) then path found

- **Breadth first search**
 - Explore vertices in layers
 - s in layer 1
 - Neighbors of s in layer 2
 - Neighbors of layer 2 in layer 3...

- **Bipartite Graphs**
 - A graph \(V \) is bipartite if \(V \) can be partitioned into \(V_1, V_2 \) such that all edges go between \(V_1 \) and \(V_2 \)
 - A graph is bipartite if it can be two colored

- **Key observation**
 - All edges go between vertices on the same layer or adjacent layers

- **Can this graph be two colored?**
Algorithm

- Run BFS
- Color odd layers red, even layers blue
- If no edges between the same layer, the graph is bipartite
- If edge between two vertices of the same layer, then there is an odd cycle, and the graph is not bipartite

Theorem: A graph is bipartite if and only if it has no odd cycles

Lemma 1

- If a graph contains an odd cycle, it is not bipartite

![Graph with an odd cycle](image1)

Lemma 2

- If a BFS tree has an *intra-level edge*, then the graph has an odd length cycle

Intra-level edge: both end points are in the same level

Lemma 3

- If a graph has no odd length cycles, then it is bipartite

Graph Search

- Data structure for next vertex to visit determines search order

![Graph search](image2)
Graph search

Breadth First Search
S = {s}
while S is not empty
u = Dequeue(S)
if u is unvisited
visit u
foreach v in N(u)
Enqueue(S, v)

Depth First Search
S = {s}
while S is not empty
u = Pop(S)
if u is unvisited
visit u
foreach v in N(u)
Push(S, v)

Breadth First Search

• All edges go between vertices on the same layer or adjacent layers

Depth First Search

• Each edge goes between vertices on the same branch
• No cross edges