CSE 417 Algorithms

Richard Anderson
Winter 2020
Lecture 4

Announcements

- **Reading**
 - Chapter 2.1, 2.2
 - Chapter 3 (Mostly review)
 - Start on Chapter 4
- **Homework Guidelines**
 - Submit homework with Canvas
 - Deadline is 9:30 AM on Wednesday
 - Describing an algorithm
 - Clarity is most important
 - Pseudocode generally preferable to just English
 - But sometimes both methods combined work best
 - Prove that your algorithm works
 - A proof is a "convincing argument"
 - Give the run time for your algorithm
 - Justify that the algorithm satisfies the runtime bound
 - You may lose points for style
 - Homework assignments will (probably) be worth the same amount

Five Problems

- Scheduling
- Weighted Scheduling
- Bipartite Matching
- Maximum Independent Set
- Competitive Facility Location

Maximum Independent Set

- Given an undirected graph $G=(V,E)$, find a set I of vertices such that there are no edges between vertices of I
- Find a set I as large as possible

Verification: Prove the graph has an independent set of size 8
NP-Completeness

- Hard to find a solution
- Easy to verify a solution once you have one
- Other problems like this
 - Hamiltonian circuit
 - Clique
 - Subset sum
 - Graph coloring

Are there even harder problems?

- Simple game:
 - Players alternating selecting nodes in a graph
 - Score points associated with node
 - Remove nodes neighbors
 - When neither can move, player with most points wins

Competitive Facility Location

- Choose location for a facility
 - Value associated with placement
 - Restriction on placing facilities too close together
 - Competitive placement of facilities
 - E.g., KFC and McDonald’s
- P-Space complete instead of NP-Complete
 - Appear to be much harder
 - No obvious certificate
 - G has a Maximum Independent Set of size 10
 - Player 1 wins by at least 10 points

Complexity theory

- These problems are P-Space complete instead of NP-Complete
 - Appear to be much harder
 - No obvious certificate
 - G has a Maximum Independent Set of size 10
 - Player 1 wins by at least 10 points

Summary – Five Problems

- Scheduling
- Weighted Scheduling
- Bipartite Matching
- Maximum Independent Set
- Competitive Scheduling
What does it mean for an algorithm to be efficient?

Definitions of efficiency

• Fast in practice
• Qualitatively better worst case performance than a brute force algorithm

Polynomial time efficiency

• An algorithm is efficient if it has a polynomial run time
• Run time as a function of problem size
 – Run time: count number of instructions executed on an underlying model of computation
 – \(T(n) \): maximum run time for all problems of size at most \(n \)

Polynomial Time

• Algorithms with polynomial run time have the property that increasing the problem size by a constant factor increases the run time by at most a constant factor (depending on the algorithm)

Why Polynomial Time?

• Generally, polynomial time seems to capture the algorithms which are efficient in practice
• The class of polynomial time algorithms has many good, mathematical properties

Polynomial vs. Exponential Complexity

• Suppose you have an algorithm which takes \(n! \) steps on a problem of size \(n \)
• If the algorithm takes one second for a problem of size 10, estimate the run time for the following problem sizes:

<table>
<thead>
<tr>
<th>Size</th>
<th>Run Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>
Ignoring constant factors

- Express run time as $O(f(n))$
- Emphasize algorithms with slower growth rates
- Fundamental idea in the study of algorithms
- Basis of Tarjan/Hopcroft Turing Award

Why ignore constant factors?

- Constant factors are arbitrary
 - Depend on the implementation
 - Depend on the details of the model
- Determining the constant factors is tedious and provides little insight

Why emphasize growth rates?

- The algorithm with the lower growth rate will be faster for all but a finite number of cases
- Performance is most important for larger problem size
- As memory prices continue to fall, bigger problem sizes become feasible
- Improving growth rate often requires new techniques

Formalizing growth rates

- $T(n) = O(f(n))$ \[T : \mathbb{Z}^+ \to \mathbb{R}^+ \]
 - If n is sufficiently large, $T(n)$ is bounded by a constant multiple of $f(n)$
 - Exist c, n_0, such that for $n > n_0$, $T(n) < c f(n)$
- $T(n)$ is $O(f(n))$ will be written as:
 $T(n) = O(f(n))$
 - Be careful with this notation

Prove $3n^2 + 5n + 20$ is $O(n^2)$

Let $c = 3$
Let $n_0 = 1$

$T(n)$ is $O(f(n))$ if there exist c, n_0, such that for $n > n_0$, $T(n) < c f(n)$

Order the following functions in increasing order by their growth rate

a) $n \log^4 n$
b) $2n^2 + 10n$
c) $2^{n/100}$
d) $1000n + \log^8 n$
e) n^{100}
f) 3^n
g) $1000 \log^{10} n$
h) $n^{1/2}$
Lower bounds

- $T(n)$ is $\Omega(f(n))$
 - $T(n)$ is at least a constant multiple of $f(n)$
 - There exists an n_0, and $\varepsilon > 0$ such that $T(n) > \varepsilon f(n)$ for all $n > n_0$
- Warning: definitions of Ω vary

- $T(n)$ is $\Theta(f(n))$ if $T(n)$ is $O(f(n))$ and $T(n)$ is $\Omega(f(n))$

Useful Theorems

- If $\lim (f(n) / g(n)) = c$ for $c > 0$ then $f(n) = \Theta(g(n))$
- If $f(n)$ is $O(g(n))$ and $g(n)$ is $O(h(n))$ then $f(n)$ is $O(h(n))$
- If $f(n)$ is $O(h(n))$ and $g(n)$ is $O(h(n))$ then $f(n) + g(n)$ is $O(h(n))$

Ordering growth rates

- For $b > 1$ and $x > 0$
 - $\log_b n$ is $O(n^x)$

- For $r > 1$ and $d > 0$
 - n^d is $O(r^n)$