Five Problems

CSE 417
Richard Anderson
Winter 2020, Lecture 3
Announcements

• Course website:
 //courses.cs.washington.edu/courses/cse417/20wi/

• Office hours
 Richard Anderson, Monday/Wednesday 2:00-3:00, CSE2 344

 Anny Kong, Monday, 3:30-4:30, CSE2 152
 Zhichao Lei, Monday, 4:30-5:30, CSE1 007
 Ansh Nagda, Tuesday, 11:30-12:30, CSE2 152
 Yuqing Ai, Tuesday, 3:00-4:00, CSE2 131
 Alex Fang, Thursday, 1:30-2:30, CSE2 151
 Chris Nie, Friday, 3:30-4:30, CSE2 121
Theory of Algorithms

- What is expertise?
- How do experts differ from novices?
Introduction of five problems

- Show the types of problems we will be considering in the class
- Examples of important types of problems
- Similar looking problems with very different characteristics
- Problems
 - Scheduling
 - Weighted Scheduling
 - Bipartite Matching
 - Maximum Independent Set
 - Competitive Facility Location
What is a problem?

- Instance
- Solution
- Constraints on solution
- Measure of value
Problem: Scheduling

• Suppose that you own a banquet hall
• You have a series of requests for use of the hall:
 \((s_1, f_1), (s_2, f_2), \ldots\)

 _______ _________ ___
 ___ _________ ______ ___
 ___ _________ _________ ___
 ___ ___ ___________

• Find a set of requests as large as possible with no overlap
What is the largest solution?
Greedy Algorithm

- Test elements one at a time if they can be members of the solution
- If an element is not ruled out by earlier choices, add it to the solution
- Many possible choices for ordering (length, start time, end time)
- For this problem, considering the jobs by increasing end time works
Suppose we add values?

- \((s_i, f_i, v_i)\), start time, finish time, payment
- Maximize value of elements in the solution

\[
\begin{array}{ccc}
5 & 2 & 1 \\
1 & 2 & 4 \\
3 & 1 & 6 \\
\end{array}
\]
Greedy Algorithms

• Earliest finish time

• Maximum value

• Give counter examples to show these algorithms don’t find the maximum value solution
Dynamic Programming

• Requests \(R_1, R_2, R_3, \ldots \)
• Assume requests are in increasing order of finish time \((f_1 < f_2 < f_3 \ldots)\)
• \(\text{Opt}_i \) is the maximum value solution of \{\(R_1, R_2, \ldots , R_i \)\} containing \(R_i \)
• \(\text{Opt}_i = \text{Max}\{ j \mid f_j < s_i \}[\text{Opt}_j + v_i] \)
Matching

• Given a bipartite graph \(G=(U,V,E) \), find a subset of the edges \(M \) of maximum size with no common endpoints.

• Application:
 – U: Professors
 – V: Courses
 – (u,v) in E if Prof. u can teach course v
Find a maximum matching
Augmenting Path Algorithm
Reduction to network flow

- More general problem
- Send flow from source to sink
- Flow subject to capacities at edges
- Flow conserved at vertices
- Can solve matching as a flow problem
Maximum Independent Set

- Given an undirected graph $G=(V,E)$, find a set I of vertices such that there are no edges between vertices of I.
- Find a set I as large as possible.
Find a Maximum Independent Set
Verification: Prove the graph has an independent set of size 8
Key characteristic

• Hard to find a solution
• Easy to verify a solution once you have one
• Other problems like this
 – Hamiltonian circuit
 – Clique
 – Subset sum
 – Graph coloring
NP-Completeness

• Theory of Hard Problems
• A large number of problems are known to be equivalent
• Very elegant theory
Are there even harder problems?

- Simple game:
 - Players alternate selecting nodes in a graph
 - Score points associated with node
 - Remove nodes neighbors
 - When neither can move, player with most points wins
Competitive Facility Location

- Choose location for a facility
 - Value associated with placement
 - Restriction on placing facilities too close together
- Competitive
 - Different companies place facilities
 - E.g., KFC and McDonald’s
Complexity theory

• These problems are P-Space complete instead of NP-Complete
 – Appear to be much harder
 – No obvious certificate
 • G has a Maximum Independent Set of size 10
 • Player 1 wins by at least 10 points
Summary

• Scheduling
• Weighted Scheduling
• Bipartite Matching
• Maximum Independent Set
• Competitive Scheduling