CSE 417
Algorithms and Computational Complexity

Richard Anderson
Winter 2020
Lecture 2
Announcements

• Course website
 – https://courses.cs.washington.edu/courses/cse417/20wi/

• Homework due Wednesdays (strict)
 – HW 1, Due Wednesday, January 15, 9:29 AM.
 – Submit solutions on canvas

• You should be on the course mailing list
 – But it will probably go to your uw.edu account
Course Mechanics

• Homework
 – Due Wednesdays
 – About 5 problems, sometimes programming
 – Programming – your choice of language
 – Target: 1 week turnaround on grading

• Exams (In class)
 – Midterm, TBD
 – Final, Wednesday, March 18, 8:30-10:20 am

• Approximate grade weighting
 – HW: 50, MT: 15, Final: 35

• Course web
 – Slides, Handouts

• Instructor Office hours (CSE2 344):
 – Monday 2:30-3:30, Wednesday 2:30-3:30
TA Office Hours

Yuqing Ai, Tuesday, 3:00-4:00, CSE2 131
Alex Fang, Thursday, 1:30-2:30, CSE2 151
Anny Kong, Monday, 3:30-4:30, TBA
Zhichao Lei, Monday, 4:30-5:30, CSE1 007
Ansh Nagda, Tuesday, 11:30-12:30, CSE2 152
Chris Nie, Friday, 3:30-4:30, CSE2 121
Stable Matching: Formal Problem

• Input
 – Preference lists for m_1, m_2, \ldots, m_n
 – Preference lists for w_1, w_2, \ldots, w_n

• Output
 – Perfect matching M satisfying stability property (e.g., no instabilities):

For all $m’, m”’, w’, w”’$

If $(m’, w’) \in M$ and $(m”’, w”’) \in M$ then
(m’ prefers $w’$ to $w”’$) or ($w”’$ prefers $m”$ to $m’$)
Idea for an Algorithm

m proposes to w
 If w is unmatched, w accepts
 If w is matched to m₂
 If w prefers m to m₂, w accepts m, dumping m₂
 If w prefers m₂ to m, w rejects m

Unmatched m proposes to the highest w on its preference list that it has not already proposed to
Algorithm

Initially all m in M and w in W are free
While there is a free m
 w highest on m’s list that m has not proposed to
 if w is free, then match (m, w)
 else
 suppose (m₂, w) is matched
 if w prefers m to m₂
 unmatch (m₂, w)
 match (m, w)
Example

\[m_1: w_1 \ w_2 \ w_3 \]
\[m_2: w_1 \ w_3 \ w_2 \]
\[m_3: w_1 \ w_2 \ w_3 \]
\[w_1: m_2 \ m_3 \ m_1 \]
\[w_2: m_3 \ m_1 \ m_2 \]
\[w_3: m_3 \ m_1 \ m_2 \]

Order: \(m_1, \ m_2, \ m_3, \ m_1, \ m_3, \ m_1 \)
Does this work?

• Does it terminate?
• Is the result a stable matching?

• Begin by identifying invariants and measures of progress
 – m’s proposals get worse (have higher m-rank)
 – Once w is matched, w stays matched
 – w’s partners get better (have lower w-rank)
Claim: If an m reaches the end of its list, then all the w’s are matched
Claim: The algorithm stops in at most n^2 steps
When the algorithms halts, every w is matched

Hence, the algorithm finds a perfect matching
The resulting matching is stable

Suppose

\[(m_1, w_1) \in M, (m_2, w_2) \in M\]
\[m_1 \text{ prefers } w_2 \text{ to } w_1\]

How could this happen?
Result

• Simple, $O(n^2)$ algorithm to compute a stable matching

• Corollary
 – A stable matching always exists
A closer look

Stable matchings are not necessarily fair

\[m_1: \ w_1 \ w_2 \ w_3 \]
\[m_2: \ w_2 \ w_3 \ w_1 \]
\[m_3: \ w_3 \ w_1 \ w_2 \]
\[w_1: \ m_2 \ m_3 \ m_1 \]
\[w_2: \ m_3 \ m_1 \ m_2 \]
\[w_3: \ m_1 \ m_2 \ m_3 \]

How many stable matchings can you find?
Algorithm under specified

• Many different ways of picking m’s to propose
• Surprising result
 – All orderings of picking free m’s give the same result

• Proving this type of result
 – Reordering argument
 – Prove algorithm is computing something mores specific
 • Show property of the solution – so it computes a specific stable matching
M-rank and W-rank of matching

- **m-rank**: position of matching w in preference list
- **M-rank**: sum of m-ranks
- **w-rank**: position of matching m in preference list
- **W-rank**: sum of w-ranks

What is the M-rank?

What is the W-rank?
Suppose there are n m’s, and n w’s

- What is the minimum possible M-rank?

- What is the maximum possible M-rank?

- Suppose each m is matched with a random w, what is the expected M-rank?
Random Preferences

Suppose that the preferences are completely random

\[m_1: w_8, w_3, w_1, w_5, w_9, w_2, w_4, w_6, w_7, w_{10} \]
\[m_2: w_7, w_{10}, w_1, w_9, w_3, w_4, w_8, w_2, w_5, w_6 \]
\[\ldots \]
\[w_1: m_1, m_4, m_9, m_5, m_{10}, m_3, m_2, m_6, m_8, m_7 \]
\[w_2: m_5, m_8, m_1, m_3, m_2, m_7, m_9, m_{10}, m_4, m_6 \]
\[\ldots \]

If there are \(n \) m’s and \(n \) w’s, what is the expected value of the M-rank and the W-rank when the proposal algorithm computes a stable matching?
Stable Matching Algorithms

• M Proposal Algorithm
 – Iterate over all m’s until all are matched

• W Proposal Algorithm
 – Change the role of m’s and w’s
 – Iterate over all w’s until all are matched
Generating a random permutation

```csharp
public static int[] Permutation(int n, Random rand) {
    int[] arr = IdentityPermutation(n);

    for (int i = 1; i < n; i++) {
        int j = rand.Next(0, i + 1);
        int temp = arr[i];
        arr[i] = arr[j];
        arr[j] = temp;
    }
    return arr;
}
```
What is the run time of the Stable Matching Algorithm?

Initially all m in M and w in W are free
While there is a free m \hspace{2cm} \text{Executed at most } n^2 \text{ times}
 \begin{align*}
 &w \text{ highest on } m\text{'s list that } m \text{ has not proposed to} \\
 &\text{if } w \text{ is free, then match } (m, w) \\
 &\text{else} \\
 &\text{suppose } (m_2, w) \text{ is matched} \\
 &\text{if } w \text{ prefers } m \text{ to } m_2 \\
 &\text{unmatch } (m_2, w) \\
 &\text{match } (m, w)
 \end{align*}
O(1) time per iteration

- Find free m
- Find next available w
- If w is matched, determine m_2
- Test if w prefer m to m_2
- Update matching
What does it mean for an algorithm to be efficient?
Key ideas

• Formalizing real world problem
 – Model: graph and preference lists
 – Mechanism: stability condition

• Specification of algorithm with a natural operation
 – Proposal

• Establishing termination of process through invariants and progress measure

• Under specification of algorithm

• Establishing uniqueness of solution